Darknet comes with many sample .cfg files to use as templates.
To select which configuration file to use as a template, click on the configuration template button at the top of the darknet output window:
More than half of these configuration files are from many years ago, some dating from Joseph Redmon's original darknet repo. On this page the .cfg files have been split into 2 tables (new and old) loosely based on when a configuration file was last modified and/or if it is still considered relevant or outdated.
voc
refers to PASCAL Visual Object Classes, a dataset with 20 classes (person, car, bicycle, bus, motorbike, train, aeroplane, chair, ...) coco
refers to COCO, a dataset with 80 classes (person, bicycle, car, motorcycle, airplane, bus, train, truck, ...) spp
refers to spatial pyramid pooling lstm
refers to long short-term memoryIf uncertain where to start when training your own neural network, try one of the following templates:
Filename | Layers | Size | Release Date | Comments |
---|---|---|---|---|
yolov4-tiny.cfg | 38 | 23.1 MiB | 2020-06-25 | Has 2 YOLO layers. Great configuration to use, quite fast. This is what I typically use when setting up new projects. |
yolov4-tiny-3l.cfg | 45 | 23.3 MiB | 2020-07-11 | Has 3 YOLO layers. Better than "tiny" at finding very small objects. |
yolov4.cfg | 162 | 245.7 MiB | 2020-04-23 | Has 3 YOLO layers. Best precision, but much larger and slower than the "tiny" variants. |
The following configuration files are relatively new:
name | lines | layers | yolo layers | network size | weights size | related | last commit | commit name | notes | links |
---|---|---|---|---|---|---|---|---|---|---|
cd53paspp-gamma.cfg | 1154 | 162 | 3 | 512x512 | yolov4.cfg | 2020-03-31 | AlexeyAB | detector, the same as yolov4.cfg, but with leaky instead of mish | ||
csdarknet53-omega.cfg | 763 | 108 | 256x256 | yolov4.cfg | 2020-03-31 | AlexeyAB | classifier, backbone for yolov4.cfg | |||
cspx-p7-mish-omega.cfg | 1459 | 212 | 320x320 | cspx-p7-mish.cfg | 2020-11-03 | AlexeyAB | classifier, backbone for cspx-p7-mish.cfg | |||
cspx-p7-mish.cfg | 2604 | 375 | 5 | 1536x1536 | 2020-12-11 | AlexeyAB | detector, yolov4-p7-large | |||
cspx-p7-mish_hp.cfg | 2638 | 375 | 5 | 896x896 | 2020-11-03 | AlexeyAB | detector, experimental cfg file | |||
csresnext50-panet-spp-original-optimal.cfg | 1043 | 138 | 3 | 608x608 | 215.9 MiB | csresnext50-panet-spp.cfg | 2020-03-31 | AlexeyAB | "the best model for detection" | 5092, 2859 (SPP) |
efficientnet-lite3.cfg | 1010 | 117 | 288x288 | 2020-03-23 | AlexeyAB | classifier, EfficientNet-lite3 | 3380 | |||
resnet152_trident.cfg | 2178 | 291 | 3 | 608x608 | 2020-01-22 | AlexeyAB | "models are experimental" | 5092 | ||
yolov4-csp-s-mish.cfg | 914 | 112 | 3 | 640x640 | 2021-10-30 | AlexeyAB | ||||
yolov4-csp-swish.cfg | 1356 | 176 | 3 | 640x640 | 2021-07-12 | AlexeyAB | ||||
yolov4-csp-x-mish.cfg | 1554 | 204 | 3 | 640x640 | 2021-10-30 | AlexeyAB | ||||
yolov4-csp-x-swish-frozen.cfg | 1557 | 204 | 3 | 640x640 | 2021-07-12 | AlexeyAB | ||||
yolov4-csp-x-swish.cfg | 1557 | 204 | 3 | 640x640 | 2021-07-12 | AlexeyAB | ||||
yolov4-csp.cfg | 1280 | 175 | 3 | 512x512 | 202.1 MiB | yolov4.cfg | 2020-12-15 | AlexeyAB | cross-stage-partial; more accurate and faster than YOLOv4, but decreased detection for small objects | Scaled YOLO v4, YOLOv4-CSP whitepaper |
yolov4-custom.cfg | 1161 | 162 | 3 | 608x608 | 245.7 MiB | yolov4.cfg | 2020-05-01 | AlexeyAB | nearly identical; lower learning rate; one additional change to a convolutional layer | YOLOv4 whitepaper |
yolov4-p5-frozen.cfg | 1838 | 244 | 3 | 896x896 | 2021-06-29 | AlexeyAB | ||||
yolov4-p5.cfg | 1837 | 244 | 3 | 896x896 | yolov4.cfg | 2021-06-27 | AlexeyAB | 7414, 7087 | ||
yolov4-p6.cfg | 2298 | 305 | 4 | 1280x1280 | yolov4.cfg | 2021-06-27 | AlexeyAB | 7414, 7087 | ||
yolov4-sam-mish-csp-reorg-bfm.cfg | 1430 | 216 | 3 | 512x512 | 2021-05-11 | AlexeyAB | ||||
yolov4-tiny-3l.cfg | 333 | 45 | 3 | 608x608 | 23.3 MiB | yolov4-tiny.cfg | 2020-07-11 | AlexeyAB | better at finding small objects; "3l" refers to 3 YOLO layers vs the usual 2 in "tiny" | |
yolov4-tiny-custom.cfg | 282 | 38 | 2 | 416x416 | 23.1 MiB | yolov4-tiny.cfg | 2020-07-11 | AlexeyAB | similar to yolov4-tiny.cfg, but contains 1 minor change to the first YOLO layer | 5346 |
yolov4-tiny.cfg | 295 | 38 | 2 | 416x416 | 23.1 MiB | 2020-12-15 | AlexeyAB | contains 2 YOLO layers | 5346 | |
yolov4-tiny_contrastive.cfg | 453 | 55 | 1 | 416x416 | 27.5 MiB | yolov4-tiny.cfg | 2020-10-20 | AlexeyAB | "experimental"; "suitable for un-supervised learning and for multi-camera object tracking" | 6892 |
yolov4.cfg | 1159 | 162 | 3 | 608x608 | 245.7 MiB | 2020-05-23 | AlexeyAB | contains 3 YOLO layers | YOLOv4 whitepaper | |
yolov4x-mish.cfg | 1437 | 203 | 3 | 640x640 | 380.9 MiB | yolov4-csp.cfg | 2020-12-07 | AlexeyAB | detector; something between yolov4-csp and yolov4-p5; more suitable for high resolutions 640x640 - 832x832 than yolov4.cfg; should be trained longer | 7131 |
yolov4_new.cfg | 1177 | 162 | 3 | 608x608 | 2021-10-30 | AlexeyAB | ||||
yolov7-tiny.cfg | 707 | 99 | 3 | 416x416 | 2022-07-07 | AlexeyAB84 | ||||
yolov7.cfg | 1025 | 143 | 3 | 640x640 | 2022-08-11 | AlexeyAB84 | ||||
yolov7x.cfg | 1153 | 159 | 3 | 640x640 | 2022-08-11 | AlexeyAB84 |
The following configuration files are from older versions of darknet:
name | lines | layers | yolo layers | network size | weights size | related | last commit | commit name | notes | links |
---|---|---|---|---|---|---|---|---|---|---|
alexnet.cfg | 96 | 15 | 227x227 | 2016-09-12 | Joseph Redmon | old cfg | ||||
cifar.cfg | 127 | 19 | 32x32 | 2016-03-14 | Joseph Redmon | "for Classification rather than Detection" | 5092 | |||
cifar.test.cfg | 120 | 18 | 32x32 | 2016-03-14 | Joseph Redmon | old cfg | ||||
crnn.train.cfg | 53 | 7 | rnn.train.cfg | 2019-03-18 | AlexeyAB | old cfg | 1624 | |||
csresnext50-panet-spp.cfg | 1019 | 138 | 3 | 512x512 | 2019-12-18 | AlexeyAB | old cfg | 2859 (SPP) | ||
darknet.cfg | 112 | 17 | 224x224 | 2016-11-18 | Joseph Redmon | old cfg | ||||
darknet19.cfg | 195 | 27 | 224x224 | 2016-11-26 | Joseph Redmon | old cfg | ||||
darknet19_448.cfg | 203 | 27 | 448x448 | 2017-09-15 | AlexeyAB | old cfg | ||||
darknet53.cfg | 567 | 78 | 256x256 | 2018-10-01 | AlexeyAB | "for Classification rather than Detection" | 5092 | |||
darknet53_448_xnor.cfg | 620 | 79 | 448x448 | 2019-06-22 | AlexeyAB | "for Classification rather than Detection" | 5092 | |||
densenet201.cfg | 1955 | 306 | 256x256 | 2017-09-14 | AlexeyAB | "for Classification rather than Detection" | 5092 | |||
efficientnet_b0.cfg | 1010 | 136 | 224x224 | 2019-12-04 | AlexeyAB | "for Classification rather than Detection" | 5092, 3380 | |||
enet-coco.cfg | 1073 | 146 | 2 | 416x416 | 2019-09-04 | AlexeyAB | "partial residual network" | Enriching Variety of Layer-wise Learning Information by Gradient Combination | ||
extraction.cfg | 207 | 28 | 224x224 | 2016-08-05 | Joseph Redmon | old cfg | ||||
extraction.conv.cfg | 180 | 27 | 256x256 | 2015-11-09 | Joseph Redmon | old cfg | ||||
extraction22k.cfg | 210 | 28 | 224x224 | 2016-09-01 | Joseph Redmon | old cfg | ||||
Gaussian_yolov3_BDD.cfg | 808 | 107 | 512x512 | 2019-11-16 | AlexeyAB | "models are experimental" | 5092 | |||
go.test.cfg | 132 | 16 | 19x19 | 2016-09-01 | Joseph Redmon | old cfg | ||||
gru.cfg | 35 | 6 | 2016-06-06 | Joseph Redmon | old cfg | |||||
jnet-conv.cfg | 119 | 18 | 10x10 | 2015-07-20 | Joseph Redmon | old cfg | ||||
lstm.train.cfg | 36 | 6 | 2019-01-29 | AlexeyAB | "long short-term memory" | 3114 | ||||
resnet101.cfg | 991 | 138 | 256x256 | 2019-11-30 | AlexeyAB | "for Classification rather than Detection" | 5092 | |||
resnet152.cfg | 1464 | 206 | 256x256 | 2018-02-15 | AlexeyAB | "for Classification rather than Detection" | 5092 | |||
resnet50.cfg | 512 | 70 | 256x256 | 2017-09-14 | AlexeyAB | "for Classification rather than Detection" | 5092 | |||
resnext152-32x4d.cfg | 1563 | 205 | 256x256 | 2018-10-01 | AlexeyAB | "for Classification rather than Detection" | 5092 | |||
rnn.cfg | 41 | 6 | 2016-02-05 | Joseph Redmon | old cfg | |||||
rnn.train.cfg | 41 | 6 | crnn.train.cfg | 2019-01-28 | AlexeyAB | old cfg | 1624 | |||
strided.cfg | 186 | 27 | 256x256 | 2015-11-03 | Joseph Redmon | "for Classification rather than Detection" | 5092 | |||
t1.test.cfg | 118 | 16 | 224x224 | 2016-06-19 | Joseph Redmon | old cfg | ||||
tiny-coco.cfg | 126 | 16 | 448x448 | 2016-11-17 | Joseph Redmon | old cfg | ||||
tiny-yolo-voc.cfg | 135 | 16 | 416x416 | 2017-04-07 | AlexeyAB | old cfg | ||||
tiny-yolo.cfg | 135 | 16 | 416x416 | 2016-11-26 | Joseph Redmon | old cfg | ||||
tiny-yolo.cfg | 127 | 16 | 448x448 | 2016-11-17 | Joseph Redmon | old cfg | ||||
tiny-yolo_xnor.cfg | 149 | 16 | 416x416 | 2018-09-22 | AlexeyAB | old cfg | ||||
tiny.cfg | 173 | 23 | 224x224 | 2016-11-15 | Joseph Redmon | old cfg | ||||
vgg-16.cfg | 154 | 26 | 256x256 | 2015-08-17 | Joseph Redmon | "for Classification rather than Detection" | 5092 | |||
vgg-conv.cfg | 122 | 18 | 224x224 | 2015-07-20 | Joseph Redmon | "for Classification rather than Detection" | 5092 | |||
writing.cfg | 42 | 5 | 256x256 | 2015-09-23 | Joseph Redmon | old cfg | ||||
xyolo.test.cfg | 144 | 23 | 448x448 | 2016-11-17 | Joseph Redmon | old cfg | ||||
yolo-coco.cfg | 256 | 31 | 448x448 | 2016-11-17 | Joseph Redmon | old cfg | ||||
yolo-small.cfg | 240 | 34 | 448x448 | 2016-11-17 | Joseph Redmon | old cfg | ||||
yolo-voc.2.0.cfg | 245 | 31 | 416x416 | 2017-04-28 | AlexeyAB | old cfg | ||||
yolo-voc.cfg | 259 | 32 | 416x416 | 2017-04-07 | AlexeyAB | old cfg | ||||
yolo.2.0.cfg | 245 | 31 | 416x416 | 2017-04-28 | AlexeyAB | old cfg | ||||
yolo.cfg | 258 | 32 | 448x448 | 2016-11-17 | Joseph Redmon | old cfg | ||||
yolo.cfg | 259 | 32 | 416x416 | 2017-04-07 | AlexeyAB | old cfg | ||||
yolo.train.cfg | 258 | 32 | 448x448 | 2016-11-17 | Joseph Redmon | old cfg | ||||
yolo2.cfg | 252 | 31 | 448x448 | 2016-11-17 | Joseph Redmon | old cfg | ||||
yolo9000.cfg | 219 | 25 | 544x544 | 2017-07-28 | AlexeyAB | old cfg | ||||
yolov2-tiny-voc.cfg | 139 | 16 | 416x416 | 2018-03-28 | AlexeyAB | old cfg | ||||
yolov2-tiny.cfg | 140 | 16 | 416x416 | 2018-03-28 | AlexeyAB | old cfg | ||||
yolov2-voc.cfg | 259 | 32 | 416x416 | 2018-03-28 | AlexeyAB | old cfg | ||||
yolov2.cfg | 259 | 32 | 416x416 | 2018-03-28 | AlexeyAB | old cfg | ||||
yolov3-openimages.cfg | 790 | 107 | 3 | 608x608 | yolov3.cfg | 2018-10-15 | AlexeyAB | YOLOv3 but already setup for 601 classes | OpenImage Dataset | |
yolov3-spp.cfg | 823 | 114 | 3 | 608x608 | yolov3.cfg | 2018-08-03 | AlexeyAB | YOLOv3 but with extra layers for spacial pyramid pooling | 2859 (SPP) | |
yolov3-tiny-prn.cfg | 200 | 28 | 2 | 416x416 | yolov3-tiny.cfg | 2019-09-04 | AlexeyAB | "partial residual network" | Enriching Variety of Layer-wise Learning Information by Gradient Combination | |
yolov3-tiny.cfg | 183 | 24 | 2 | 416x416 | 33.1 MiB | 2018-05-07 | Bartek GÄ…siorzewski | contains 2 YOLO layers | ||
yolov3-tiny_3l.cfg | 227 | 31 | 3 | 608x608 | 34.4 MiB | yolov3-tiny.cfg | 2019-01-04 | AlexeyAB | better at finding small objects; "3l" refers to 3 YOLO layers vs the usual 2 in "tiny" | |
yolov3-tiny_obj.cfg | 183 | 24 | 2 | 416x416 | 33.1 MiB | yolov3-tiny.cfg | 2018-05-18 | AlexeyAB | Exactly the same as yolov3-tiny.cfg. | |
yolov3-tiny_occlusion_track.cfg | 219 | 27 | 2 | 416x416 | yolov3-tiny.cfg | 2019-03-02 | AlexeyAB | "object Detection & Tracking using conv-rnn layer on frames from video" | 2553 | |
yolov3-tiny_xnor.cfg | 198 | 24 | 2 | 416x416 | yolov3-tiny.cfg | 2018-09-22 | AlexeyAB | "XNOR-net ~2x faster than cuDNN on CUDA" | 3054 | |
yolov3-voc.cfg | 786 | 107 | 3 | 416x416 | yolov3.cfg | 2018-03-30 | AlexeyAB | similar to the usual yolov3.cfg but pre-configured for 20 VOC classes | ||
yolov3-voc.yolov3-giou-40.cfg | 809 | 107 | 3 | 416x416 | yolov3-voc.cfg | 2019-06-01 | AlexeyAB | "models are experimental" | 5092, Generalized Intersection over Union (GIoU) | |
yolov3.cfg | 790 | 107 | 3 | 416x416 | 234.9 MiB | 2018-05-06 | AlexeyAB | contains 3 YOLO layers | ||
yolov3.coco-giou-12.cfg | 807 | 107 | 3 | 608x608 | yolov3.cfg | 2019-06-01 | AlexeyAB | "models are experimental" | 5092, Generalized Intersection over Union (GIoU) | |
yolov3_5l.cfg | 969 | 131 | 5 | 416x416 | 236.2 MiB | yolov3.cfg | 2018-12-11 | AlexeyAB | "5l" refers to 5 YOLO layers; "...or very small objects, or if you want to set high network resolution" | 5092 |