DarkMark  v1.10.2-1
Image markup for darknet machine learning.
Looking for a C++ dev who knows OpenCV?
I'm looking for work. Hire me!
Configuration
See also
https://www.ccoderun.ca/programming/darknet_faq/#configuration_template

Darknet comes with many sample .cfg files to use as templates.

To select which configuration file to use as a template, click on the configuration template button at the top of the darknet output window:

More than half of these configuration files are from many years ago, some dating from Joseph Redmon's original darknet repo. On this page the .cfg files have been split into 2 tables (new and old) loosely based on when a configuration file was last modified and/or if it is still considered relevant or outdated.

Note
In the tables below:

Getting Started

If uncertain where to start when training your own neural network, try one of the following templates:

Filename Layers Size Release Date Comments
yolov4-tiny.cfg 38 23.1 MiB 2020-06-25 Has 2 YOLO layers. Great configuration to use, quite fast. This is what I typically use when setting up new projects.
yolov4-tiny-3l.cfg 45 23.3 MiB 2020-07-11 Has 3 YOLO layers. Better than "tiny" at finding very small objects.
yolov4.cfg 162 245.7 MiB 2020-04-23 Has 3 YOLO layers. Best precision, but much larger and slower than the "tiny" variants.

New Configuration

The following configuration files are relatively new:

name lines layers yolo layers network size weights size related last commit commit name notes links
cd53paspp-gamma.cfg 1154 162 3 512x512 yolov4.cfg 2020-03-31 AlexeyAB detector, the same as yolov4.cfg, but with leaky instead of mish  
csdarknet53-omega.cfg 763 108 256x256 yolov4.cfg 2020-03-31 AlexeyAB classifier, backbone for yolov4.cfg  
cspx-p7-mish-omega.cfg 1459 212 320x320 cspx-p7-mish.cfg 2020-11-03 AlexeyAB classifier, backbone for cspx-p7-mish.cfg  
cspx-p7-mish.cfg 2604 375 5 1536x1536 2020-12-11 AlexeyAB detector, yolov4-p7-large  
cspx-p7-mish_hp.cfg 2638 375 5 896x896 2020-11-03 AlexeyAB detector, experimental cfg file  
csresnext50-panet-spp-original-optimal.cfg 1043 138 3 608x608 215.9 MiB csresnext50-panet-spp.cfg 2020-03-31 AlexeyAB "the best model for detection" 5092, 2859 (SPP)
efficientnet-lite3.cfg 1010 117 288x288 2020-03-23 AlexeyAB classifier, EfficientNet-lite3 3380
resnet152_trident.cfg 2178 291 3 608x608 2020-01-22 AlexeyAB "models are experimental" 5092
yolov4-csp-s-mish.cfg 914 112 3 640x640 2021-10-30 AlexeyAB  
yolov4-csp-swish.cfg 1356 176 3 640x640 2021-07-12 AlexeyAB  
yolov4-csp-x-mish.cfg 1554 204 3 640x640 2021-10-30 AlexeyAB  
yolov4-csp-x-swish-frozen.cfg 1557 204 3 640x640 2021-07-12 AlexeyAB  
yolov4-csp-x-swish.cfg 1557 204 3 640x640 2021-07-12 AlexeyAB  
yolov4-csp.cfg 1280 175 3 512x512 202.1 MiB yolov4.cfg 2020-12-15 AlexeyAB cross-stage-partial; more accurate and faster than YOLOv4, but decreased detection for small objects Scaled YOLO v4, YOLOv4-CSP whitepaper
yolov4-custom.cfg 1161 162 3 608x608 245.7 MiB yolov4.cfg 2020-05-01 AlexeyAB nearly identical; lower learning rate; one additional change to a convolutional layer YOLOv4 whitepaper
yolov4-p5-frozen.cfg 1838 244 3 896x896 2021-06-29 AlexeyAB  
yolov4-p5.cfg 1837 244 3 896x896 yolov4.cfg 2021-06-27 AlexeyAB 7414, 7087
yolov4-p6.cfg 2298 305 4 1280x1280 yolov4.cfg 2021-06-27 AlexeyAB 7414, 7087
yolov4-sam-mish-csp-reorg-bfm.cfg 1430 216 3 512x512 2021-05-11 AlexeyAB  
yolov4-tiny-3l.cfg 333 45 3 608x608 23.3 MiB yolov4-tiny.cfg 2020-07-11 AlexeyAB better at finding small objects; "3l" refers to 3 YOLO layers vs the usual 2 in "tiny"  
yolov4-tiny-custom.cfg 282 38 2 416x416 23.1 MiB yolov4-tiny.cfg 2020-07-11 AlexeyAB similar to yolov4-tiny.cfg, but contains 1 minor change to the first YOLO layer 5346
yolov4-tiny.cfg 295 38 2 416x416 23.1 MiB 2020-12-15 AlexeyAB contains 2 YOLO layers 5346
yolov4-tiny_contrastive.cfg 453 55 1 416x416 27.5 MiB yolov4-tiny.cfg 2020-10-20 AlexeyAB "experimental"; "suitable for un-supervised learning and for multi-camera object tracking" 6892
yolov4.cfg 1159 162 3 608x608 245.7 MiB 2020-05-23 AlexeyAB contains 3 YOLO layers YOLOv4 whitepaper
yolov4x-mish.cfg 1437 203 3 640x640 380.9 MiB yolov4-csp.cfg 2020-12-07 AlexeyAB detector; something between yolov4-csp and yolov4-p5; more suitable for high resolutions 640x640 - 832x832 than yolov4.cfg; should be trained longer 7131
yolov4_new.cfg 1177 162 3 608x608 2021-10-30 AlexeyAB  
yolov7-tiny.cfg 707 99 3 416x416 2022-07-07 AlexeyAB84  
yolov7.cfg 1025 143 3 640x640 2022-08-11 AlexeyAB84  
yolov7x.cfg 1153 159 3 640x640 2022-08-11 AlexeyAB84  

Old Configuration

The following configuration files are from older versions of darknet:

name lines layers yolo layers network size weights size related last commit commit name notes links
alexnet.cfg 96 15 227x227 2016-09-12 Joseph Redmon old cfg  
cifar.cfg 127 19 32x32 2016-03-14 Joseph Redmon "for Classification rather than Detection" 5092
cifar.test.cfg 120 18 32x32 2016-03-14 Joseph Redmon old cfg  
crnn.train.cfg 53 7 rnn.train.cfg 2019-03-18 AlexeyAB old cfg 1624
csresnext50-panet-spp.cfg 1019 138 3 512x512 2019-12-18 AlexeyAB old cfg 2859 (SPP)
darknet.cfg 112 17 224x224 2016-11-18 Joseph Redmon old cfg  
darknet19.cfg 195 27 224x224 2016-11-26 Joseph Redmon old cfg  
darknet19_448.cfg 203 27 448x448 2017-09-15 AlexeyAB old cfg  
darknet53.cfg 567 78 256x256 2018-10-01 AlexeyAB "for Classification rather than Detection" 5092
darknet53_448_xnor.cfg 620 79 448x448 2019-06-22 AlexeyAB "for Classification rather than Detection" 5092
densenet201.cfg 1955 306 256x256 2017-09-14 AlexeyAB "for Classification rather than Detection" 5092
efficientnet_b0.cfg 1010 136 224x224 2019-12-04 AlexeyAB "for Classification rather than Detection" 5092, 3380
enet-coco.cfg 1073 146 2 416x416 2019-09-04 AlexeyAB "partial residual network" Enriching Variety of Layer-wise Learning Information by Gradient Combination
extraction.cfg 207 28 224x224 2016-08-05 Joseph Redmon old cfg  
extraction.conv.cfg 180 27 256x256 2015-11-09 Joseph Redmon old cfg  
extraction22k.cfg 210 28 224x224 2016-09-01 Joseph Redmon old cfg  
Gaussian_yolov3_BDD.cfg 808 107 512x512 2019-11-16 AlexeyAB "models are experimental" 5092
go.test.cfg 132 16 19x19 2016-09-01 Joseph Redmon old cfg  
gru.cfg 35 6 2016-06-06 Joseph Redmon old cfg  
jnet-conv.cfg 119 18 10x10 2015-07-20 Joseph Redmon old cfg  
lstm.train.cfg 36 6 2019-01-29 AlexeyAB "long short-term memory" 3114
resnet101.cfg 991 138 256x256 2019-11-30 AlexeyAB "for Classification rather than Detection" 5092
resnet152.cfg 1464 206 256x256 2018-02-15 AlexeyAB "for Classification rather than Detection" 5092
resnet50.cfg 512 70 256x256 2017-09-14 AlexeyAB "for Classification rather than Detection" 5092
resnext152-32x4d.cfg 1563 205 256x256 2018-10-01 AlexeyAB "for Classification rather than Detection" 5092
rnn.cfg 41 6 2016-02-05 Joseph Redmon old cfg  
rnn.train.cfg 41 6 crnn.train.cfg 2019-01-28 AlexeyAB old cfg 1624
strided.cfg 186 27 256x256 2015-11-03 Joseph Redmon "for Classification rather than Detection" 5092
t1.test.cfg 118 16 224x224 2016-06-19 Joseph Redmon old cfg  
tiny-coco.cfg 126 16 448x448 2016-11-17 Joseph Redmon old cfg  
tiny-yolo-voc.cfg 135 16 416x416 2017-04-07 AlexeyAB old cfg  
tiny-yolo.cfg 135 16 416x416 2016-11-26 Joseph Redmon old cfg  
tiny-yolo.cfg 127 16 448x448 2016-11-17 Joseph Redmon old cfg  
tiny-yolo_xnor.cfg 149 16 416x416 2018-09-22 AlexeyAB old cfg  
tiny.cfg 173 23 224x224 2016-11-15 Joseph Redmon old cfg  
vgg-16.cfg 154 26 256x256 2015-08-17 Joseph Redmon "for Classification rather than Detection" 5092
vgg-conv.cfg 122 18 224x224 2015-07-20 Joseph Redmon "for Classification rather than Detection" 5092
writing.cfg 42 5 256x256 2015-09-23 Joseph Redmon old cfg  
xyolo.test.cfg 144 23 448x448 2016-11-17 Joseph Redmon old cfg  
yolo-coco.cfg 256 31 448x448 2016-11-17 Joseph Redmon old cfg  
yolo-small.cfg 240 34 448x448 2016-11-17 Joseph Redmon old cfg  
yolo-voc.2.0.cfg 245 31 416x416 2017-04-28 AlexeyAB old cfg  
yolo-voc.cfg 259 32 416x416 2017-04-07 AlexeyAB old cfg  
yolo.2.0.cfg 245 31 416x416 2017-04-28 AlexeyAB old cfg  
yolo.cfg 258 32 448x448 2016-11-17 Joseph Redmon old cfg  
yolo.cfg 259 32 416x416 2017-04-07 AlexeyAB old cfg  
yolo.train.cfg 258 32 448x448 2016-11-17 Joseph Redmon old cfg  
yolo2.cfg 252 31 448x448 2016-11-17 Joseph Redmon old cfg  
yolo9000.cfg 219 25 544x544 2017-07-28 AlexeyAB old cfg  
yolov2-tiny-voc.cfg 139 16 416x416 2018-03-28 AlexeyAB old cfg  
yolov2-tiny.cfg 140 16 416x416 2018-03-28 AlexeyAB old cfg  
yolov2-voc.cfg 259 32 416x416 2018-03-28 AlexeyAB old cfg  
yolov2.cfg 259 32 416x416 2018-03-28 AlexeyAB old cfg  
yolov3-openimages.cfg 790 107 3 608x608 yolov3.cfg 2018-10-15 AlexeyAB YOLOv3 but already setup for 601 classes OpenImage Dataset
yolov3-spp.cfg 823 114 3 608x608 yolov3.cfg 2018-08-03 AlexeyAB YOLOv3 but with extra layers for spacial pyramid pooling 2859 (SPP)
yolov3-tiny-prn.cfg 200 28 2 416x416 yolov3-tiny.cfg 2019-09-04 AlexeyAB "partial residual network" Enriching Variety of Layer-wise Learning Information by Gradient Combination
yolov3-tiny.cfg 183 24 2 416x416 33.1 MiB 2018-05-07 Bartek GÄ…siorzewski contains 2 YOLO layers  
yolov3-tiny_3l.cfg 227 31 3 608x608 34.4 MiB yolov3-tiny.cfg 2019-01-04 AlexeyAB better at finding small objects; "3l" refers to 3 YOLO layers vs the usual 2 in "tiny"  
yolov3-tiny_obj.cfg 183 24 2 416x416 33.1 MiB yolov3-tiny.cfg 2018-05-18 AlexeyAB Exactly the same as yolov3-tiny.cfg.  
yolov3-tiny_occlusion_track.cfg 219 27 2 416x416 yolov3-tiny.cfg 2019-03-02 AlexeyAB "object Detection & Tracking using conv-rnn layer on frames from video" 2553
yolov3-tiny_xnor.cfg 198 24 2 416x416 yolov3-tiny.cfg 2018-09-22 AlexeyAB "XNOR-net ~2x faster than cuDNN on CUDA" 3054
yolov3-voc.cfg 786 107 3 416x416 yolov3.cfg 2018-03-30 AlexeyAB similar to the usual yolov3.cfg but pre-configured for 20 VOC classes  
yolov3-voc.yolov3-giou-40.cfg 809 107 3 416x416 yolov3-voc.cfg 2019-06-01 AlexeyAB "models are experimental" 5092, Generalized Intersection over Union (GIoU)
yolov3.cfg 790 107 3 416x416 234.9 MiB 2018-05-06 AlexeyAB contains 3 YOLO layers  
yolov3.coco-giou-12.cfg 807 107 3 608x608 yolov3.cfg 2019-06-01 AlexeyAB "models are experimental" 5092, Generalized Intersection over Union (GIoU)
yolov3_5l.cfg 969 131 5 416x416 236.2 MiB yolov3.cfg 2018-12-11 AlexeyAB "5l" refers to 5 YOLO layers; "...or very small objects, or if you want to set high network resolution" 5092