OpenCV  4.1.1-pre
Open Source Computer Vision
Looking for a C++ dev who knows OpenCV?
I'm looking for work. Hire me!
cv::VariationalRefinement Class Referenceabstract

Variational optical flow refinement. More...

#include <opencv2/video/tracking.hpp>

Inheritance diagram for cv::VariationalRefinement:
Collaboration diagram for cv::VariationalRefinement:

Public Member Functions

virtual void calc (InputArray I0, InputArray I1, InputOutputArray flow)=0
 Calculates an optical flow. More...
 
virtual void calcUV (InputArray I0, InputArray I1, InputOutputArray flow_u, InputOutputArray flow_v)=0
 calc function overload to handle separate horizontal (u) and vertical (v) flow components (to avoid extra splits/merges) More...
 
virtual void clear ()
 Clears the algorithm state. More...
 
virtual void collectGarbage ()=0
 Releases all inner buffers. More...
 
virtual bool empty () const
 Returns true if the Algorithm is empty (e.g. More...
 
virtual float getAlpha () const =0
 Weight of the smoothness term. More...
 
virtual String getDefaultName () const
 Returns the algorithm string identifier. More...
 
virtual float getDelta () const =0
 Weight of the color constancy term. More...
 
virtual int getFixedPointIterations () const =0
 Number of outer (fixed-point) iterations in the minimization procedure. More...
 
virtual float getGamma () const =0
 Weight of the gradient constancy term. More...
 
virtual float getOmega () const =0
 Relaxation factor in SOR. More...
 
virtual int getSorIterations () const =0
 Number of inner successive over-relaxation (SOR) iterations in the minimization procedure to solve the respective linear system. More...
 
virtual void read (const FileNode &fn)
 Reads algorithm parameters from a file storage. More...
 
virtual void save (const String &filename) const
 Saves the algorithm to a file. More...
 
virtual void setAlpha (float val)=0
 Weight of the smoothness term. More...
 
virtual void setDelta (float val)=0
 Weight of the color constancy term. More...
 
virtual void setFixedPointIterations (int val)=0
 Number of outer (fixed-point) iterations in the minimization procedure. More...
 
virtual void setGamma (float val)=0
 Weight of the gradient constancy term. More...
 
virtual void setOmega (float val)=0
 Relaxation factor in SOR. More...
 
virtual void setSorIterations (int val)=0
 Number of inner successive over-relaxation (SOR) iterations in the minimization procedure to solve the respective linear system. More...
 
virtual void write (FileStorage &fs) const
 Stores algorithm parameters in a file storage. More...
 
void write (const Ptr< FileStorage > &fs, const String &name=String()) const
 simplified API for language bindings This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts. More...
 

Static Public Member Functions

static Ptr< VariationalRefinementcreate ()
 Creates an instance of VariationalRefinement. More...
 
template<typename _Tp >
static Ptr< _Tp > load (const String &filename, const String &objname=String())
 Loads algorithm from the file. More...
 
template<typename _Tp >
static Ptr< _Tp > loadFromString (const String &strModel, const String &objname=String())
 Loads algorithm from a String. More...
 
template<typename _Tp >
static Ptr< _Tp > read (const FileNode &fn)
 Reads algorithm from the file node. More...
 

Protected Member Functions

void writeFormat (FileStorage &fs) const
 

Detailed Description

Variational optical flow refinement.

This class implements variational refinement of the input flow field, i.e. it uses input flow to initialize the minimization of the following functional: \(E(U) = \int_{\Omega} \delta \Psi(E_I) + \gamma \Psi(E_G) + \alpha \Psi(E_S) \), where \(E_I,E_G,E_S\) are color constancy, gradient constancy and smoothness terms respectively. \(\Psi(s^2)=\sqrt{s^2+\epsilon^2}\) is a robust penalizer to limit the influence of outliers. A complete formulation and a description of the minimization procedure can be found in [15]

Member Function Documentation

◆ calc()

virtual void cv::DenseOpticalFlow::calc ( InputArray  I0,
InputArray  I1,
InputOutputArray  flow 
)
pure virtualinherited

Calculates an optical flow.

Parameters
I0first 8-bit single-channel input image.
I1second input image of the same size and the same type as prev.
flowcomputed flow image that has the same size as prev and type CV_32FC2.

◆ calcUV()

virtual void cv::VariationalRefinement::calcUV ( InputArray  I0,
InputArray  I1,
InputOutputArray  flow_u,
InputOutputArray  flow_v 
)
pure virtual

calc function overload to handle separate horizontal (u) and vertical (v) flow components (to avoid extra splits/merges)

◆ clear()

virtual void cv::Algorithm::clear ( )
inlinevirtualinherited

Clears the algorithm state.

Reimplemented in cv::FlannBasedMatcher, and cv::DescriptorMatcher.

◆ collectGarbage()

virtual void cv::DenseOpticalFlow::collectGarbage ( )
pure virtualinherited

Releases all inner buffers.

◆ create()

static Ptr<VariationalRefinement> cv::VariationalRefinement::create ( )
static

Creates an instance of VariationalRefinement.

◆ empty()

virtual bool cv::Algorithm::empty ( ) const
inlinevirtualinherited

Returns true if the Algorithm is empty (e.g.

in the very beginning or after unsuccessful read

Reimplemented in cv::DescriptorMatcher, cv::ml::StatModel, cv::Feature2D, and cv::BaseCascadeClassifier.

◆ getAlpha()

virtual float cv::VariationalRefinement::getAlpha ( ) const
pure virtual

Weight of the smoothness term.

See also
setAlpha

◆ getDefaultName()

virtual String cv::Algorithm::getDefaultName ( ) const
virtualinherited

Returns the algorithm string identifier.

This string is used as top level xml/yml node tag when the object is saved to a file or string.

Reimplemented in cv::AKAZE, cv::KAZE, cv::SimpleBlobDetector, cv::GFTTDetector, cv::AgastFeatureDetector, cv::FastFeatureDetector, cv::MSER, cv::ORB, cv::BRISK, and cv::Feature2D.

◆ getDelta()

virtual float cv::VariationalRefinement::getDelta ( ) const
pure virtual

Weight of the color constancy term.

See also
setDelta

◆ getFixedPointIterations()

virtual int cv::VariationalRefinement::getFixedPointIterations ( ) const
pure virtual

Number of outer (fixed-point) iterations in the minimization procedure.

See also
setFixedPointIterations

◆ getGamma()

virtual float cv::VariationalRefinement::getGamma ( ) const
pure virtual

Weight of the gradient constancy term.

See also
setGamma

◆ getOmega()

virtual float cv::VariationalRefinement::getOmega ( ) const
pure virtual

Relaxation factor in SOR.

See also
setOmega

◆ getSorIterations()

virtual int cv::VariationalRefinement::getSorIterations ( ) const
pure virtual

Number of inner successive over-relaxation (SOR) iterations in the minimization procedure to solve the respective linear system.

See also
setSorIterations

◆ load()

template<typename _Tp >
static Ptr<_Tp> cv::Algorithm::load ( const String filename,
const String objname = String() 
)
inlinestaticinherited

Loads algorithm from the file.

Parameters
filenameName of the file to read.
objnameThe optional name of the node to read (if empty, the first top-level node will be used)

This is static template method of Algorithm. It's usage is following (in the case of SVM):

Ptr<SVM> svm = Algorithm::load<SVM>("my_svm_model.xml");

In order to make this method work, the derived class must overwrite Algorithm::read(const FileNode& fn).

References CV_Assert, cv::FileNode::empty(), cv::FileStorage::getFirstTopLevelNode(), cv::FileStorage::isOpened(), and cv::FileStorage::READ.

Here is the call graph for this function:

◆ loadFromString()

template<typename _Tp >
static Ptr<_Tp> cv::Algorithm::loadFromString ( const String strModel,
const String objname = String() 
)
inlinestaticinherited

Loads algorithm from a String.

Parameters
strModelThe string variable containing the model you want to load.
objnameThe optional name of the node to read (if empty, the first top-level node will be used)

This is static template method of Algorithm. It's usage is following (in the case of SVM):

Ptr<SVM> svm = Algorithm::loadFromString<SVM>(myStringModel);

References CV_WRAP, cv::FileNode::empty(), cv::FileStorage::getFirstTopLevelNode(), cv::FileStorage::MEMORY, and cv::FileStorage::READ.

Here is the call graph for this function:

◆ read() [1/2]

virtual void cv::Algorithm::read ( const FileNode fn)
inlinevirtualinherited

Reads algorithm parameters from a file storage.

Reimplemented in cv::FlannBasedMatcher, cv::DescriptorMatcher, and cv::Feature2D.

◆ read() [2/2]

template<typename _Tp >
static Ptr<_Tp> cv::Algorithm::read ( const FileNode fn)
inlinestaticinherited

Reads algorithm from the file node.

This is static template method of Algorithm. It's usage is following (in the case of SVM):

cv::FileStorage fsRead("example.xml", FileStorage::READ);
Ptr<SVM> svm = Algorithm::read<SVM>(fsRead.root());

In order to make this method work, the derived class must overwrite Algorithm::read(const FileNode& fn) and also have static create() method without parameters (or with all the optional parameters)

◆ save()

virtual void cv::Algorithm::save ( const String filename) const
virtualinherited

Saves the algorithm to a file.

In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).

◆ setAlpha()

virtual void cv::VariationalRefinement::setAlpha ( float  val)
pure virtual

Weight of the smoothness term.

See also
getAlpha

◆ setDelta()

virtual void cv::VariationalRefinement::setDelta ( float  val)
pure virtual

Weight of the color constancy term.

See also
getDelta

◆ setFixedPointIterations()

virtual void cv::VariationalRefinement::setFixedPointIterations ( int  val)
pure virtual

Number of outer (fixed-point) iterations in the minimization procedure.

See also
getFixedPointIterations

◆ setGamma()

virtual void cv::VariationalRefinement::setGamma ( float  val)
pure virtual

Weight of the gradient constancy term.

See also
getGamma

◆ setOmega()

virtual void cv::VariationalRefinement::setOmega ( float  val)
pure virtual

Relaxation factor in SOR.

See also
getOmega

◆ setSorIterations()

virtual void cv::VariationalRefinement::setSorIterations ( int  val)
pure virtual

Number of inner successive over-relaxation (SOR) iterations in the minimization procedure to solve the respective linear system.

See also
getSorIterations

◆ write() [1/2]

virtual void cv::Algorithm::write ( FileStorage fs) const
inlinevirtualinherited

Stores algorithm parameters in a file storage.

Reimplemented in cv::FlannBasedMatcher, cv::DescriptorMatcher, and cv::Feature2D.

References CV_WRAP.

Referenced by cv::Feature2D::write(), and cv::DescriptorMatcher::write().

Here is the caller graph for this function:

◆ write() [2/2]

void cv::Algorithm::write ( const Ptr< FileStorage > &  fs,
const String name = String() 
) const
inherited

simplified API for language bindings This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

◆ writeFormat()

void cv::Algorithm::writeFormat ( FileStorage fs) const
protectedinherited

The documentation for this class was generated from the following file: