OpenCV  4.1.1-pre
Open Source Computer Vision
Looking for a C++ dev who knows OpenCV?
I'm looking for work. Hire me!
cvflann::KDTreeIndex< Distance > Class Template Reference

Randomized kd-tree index. More...

#include <opencv2/flann/kdtree_index.h>

Inheritance diagram for cvflann::KDTreeIndex< Distance >:
Collaboration diagram for cvflann::KDTreeIndex< Distance >:

Public Types

typedef Distance::ResultType DistanceType
 
typedef Distance::ElementType ElementType
 

Public Member Functions

 KDTreeIndex (const Matrix< ElementType > &inputData, const IndexParams &params=KDTreeIndexParams(), Distance d=Distance())
 KDTree constructor. More...
 
 KDTreeIndex (const KDTreeIndex &)
 
 ~KDTreeIndex ()
 Standard destructor. More...
 
void buildIndex () CV_OVERRIDE
 Builds the index. More...
 
void findNeighbors (ResultSet< DistanceType > &result, const ElementType *vec, const SearchParams &searchParams) CV_OVERRIDE
 Find set of nearest neighbors to vec. More...
 
IndexParams getParameters () const CV_OVERRIDE
 
flann_algorithm_t getType () const CV_OVERRIDE
 
virtual void knnSearch (const Matrix< ElementType > &queries, Matrix< int > &indices, Matrix< DistanceType > &dists, int knn, const SearchParams &params)
 Perform k-nearest neighbor search. More...
 
void loadIndex (FILE *stream) CV_OVERRIDE
 Loads the index from a stream. More...
 
KDTreeIndexoperator= (const KDTreeIndex &)
 
virtual int radiusSearch (const Matrix< ElementType > &query, Matrix< int > &indices, Matrix< DistanceType > &dists, float radius, const SearchParams &params)
 Perform radius search. More...
 
void saveIndex (FILE *stream) CV_OVERRIDE
 Saves the index to a stream. More...
 
size_t size () const CV_OVERRIDE
 Returns size of index. More...
 
int usedMemory () const CV_OVERRIDE
 Computes the inde memory usage Returns: memory used by the index. More...
 
size_t veclen () const CV_OVERRIDE
 Returns the length of an index feature. More...
 

Detailed Description

template<typename Distance>
class cvflann::KDTreeIndex< Distance >

Randomized kd-tree index.

Contains the k-d trees and other information for indexing a set of points for nearest-neighbor matching.

Member Typedef Documentation

◆ DistanceType

template<typename Distance>
typedef Distance::ResultType cvflann::KDTreeIndex< Distance >::DistanceType

◆ ElementType

template<typename Distance>
typedef Distance::ElementType cvflann::KDTreeIndex< Distance >::ElementType

Constructor & Destructor Documentation

◆ KDTreeIndex() [1/2]

template<typename Distance>
cvflann::KDTreeIndex< Distance >::KDTreeIndex ( const Matrix< ElementType > &  inputData,
const IndexParams params = KDTreeIndexParams(),
Distance  d = Distance() 
)
inline

KDTree constructor.

Params: inputData = dataset with the input features params = parameters passed to the kdtree algorithm

References cvflann::get_param().

Here is the call graph for this function:

◆ KDTreeIndex() [2/2]

template<typename Distance>
cvflann::KDTreeIndex< Distance >::KDTreeIndex ( const KDTreeIndex< Distance > &  )

◆ ~KDTreeIndex()

template<typename Distance>
cvflann::KDTreeIndex< Distance >::~KDTreeIndex ( )
inline

Standard destructor.

Member Function Documentation

◆ buildIndex()

template<typename Distance>
void cvflann::KDTreeIndex< Distance >::buildIndex ( )
inlinevirtual

Builds the index.

Implements cvflann::NNIndex< Distance >.

References cv::randShuffle().

Referenced by cvflann::AutotunedIndex< Distance >::getType().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ findNeighbors()

template<typename Distance>
void cvflann::KDTreeIndex< Distance >::findNeighbors ( ResultSet< DistanceType > &  result,
const ElementType vec,
const SearchParams searchParams 
)
inlinevirtual

Find set of nearest neighbors to vec.

Their indices are stored inside the result object.

Params: result = the result object in which the indices of the nearest-neighbors are stored vec = the vector for which to search the nearest neighbors maxCheck = the maximum number of restarts (in a best-bin-first manner)

Implements cvflann::NNIndex< Distance >.

References cvflann::FLANN_CHECKS_UNLIMITED, and cvflann::get_param().

Here is the call graph for this function:

◆ getParameters()

◆ getType()

template<typename Distance>
flann_algorithm_t cvflann::KDTreeIndex< Distance >::getType ( ) const
inlinevirtual
Returns
The index type (kdtree, kmeans,...)

Implements cvflann::NNIndex< Distance >.

References cvflann::FLANN_INDEX_KDTREE.

◆ knnSearch()

template<typename Distance>
virtual void cvflann::NNIndex< Distance >::knnSearch ( const Matrix< ElementType > &  queries,
Matrix< int > &  indices,
Matrix< DistanceType > &  dists,
int  knn,
const SearchParams params 
)
inlinevirtualinherited

Perform k-nearest neighbor search.

Parameters
[in]queriesThe query points for which to find the nearest neighbors
[out]indicesThe indices of the nearest neighbors found
[out]distsDistances to the nearest neighbors found
[in]knnNumber of nearest neighbors to return
[in]paramsSearch parameters

Reimplemented in cvflann::Index< Distance >, cvflann::Index< cv::L2< ElementType > >, cvflann::Index< cv::L1< ElementType > >, cvflann::KDTreeSingleIndex< Distance >, and cvflann::LshIndex< Distance >.

◆ loadIndex()

template<typename Distance>
void cvflann::KDTreeIndex< Distance >::loadIndex ( FILE *  stream)
inlinevirtual

Loads the index from a stream.

Parameters
streamThe stream from which the index is loaded

Implements cvflann::NNIndex< Distance >.

References cvflann::load_value().

Here is the call graph for this function:

◆ operator=()

template<typename Distance>
KDTreeIndex& cvflann::KDTreeIndex< Distance >::operator= ( const KDTreeIndex< Distance > &  )

◆ radiusSearch()

template<typename Distance>
virtual int cvflann::NNIndex< Distance >::radiusSearch ( const Matrix< ElementType > &  query,
Matrix< int > &  indices,
Matrix< DistanceType > &  dists,
float  radius,
const SearchParams params 
)
inlinevirtualinherited

Perform radius search.

Parameters
[in]queryThe query point
[out]indicesThe indinces of the neighbors found within the given radius
[out]distsThe distances to the nearest neighbors found
[in]radiusThe radius used for search
[in]paramsSearch parameters
Returns
Number of neighbors found

Reimplemented in cvflann::Index< Distance >, cvflann::Index< cv::L2< ElementType > >, and cvflann::Index< cv::L1< ElementType > >.

◆ saveIndex()

template<typename Distance>
void cvflann::KDTreeIndex< Distance >::saveIndex ( FILE *  stream)
inlinevirtual

Saves the index to a stream.

Parameters
streamThe stream to save the index to

Implements cvflann::NNIndex< Distance >.

References cvflann::save_value().

Here is the call graph for this function:

◆ size()

template<typename Distance>
size_t cvflann::KDTreeIndex< Distance >::size ( ) const
inlinevirtual

Returns size of index.

Implements cvflann::NNIndex< Distance >.

◆ usedMemory()

template<typename Distance>
int cvflann::KDTreeIndex< Distance >::usedMemory ( ) const
inlinevirtual

Computes the inde memory usage Returns: memory used by the index.

Implements cvflann::NNIndex< Distance >.

Referenced by cvflann::AutotunedIndex< Distance >::getType().

Here is the caller graph for this function:

◆ veclen()

template<typename Distance>
size_t cvflann::KDTreeIndex< Distance >::veclen ( ) const
inlinevirtual

Returns the length of an index feature.

Implements cvflann::NNIndex< Distance >.


The documentation for this class was generated from the following file: