|
def | __init__ (self, filter_length=1024, hop_length=256, win_length=1024, n_mel_channels=80, sampling_rate=22050, mel_fmin=0.0, mel_fmax=8000.0) |
|
def | spectral_normalize (self, magnitudes) |
|
def | spectral_de_normalize (self, magnitudes) |
|
def | mel_spectrogram (self, y) |
|
◆ __init__()
def layers.TacotronSTFT.__init__ |
( |
|
self, |
|
|
|
filter_length = 1024 , |
|
|
|
hop_length = 256 , |
|
|
|
win_length = 1024 , |
|
|
|
n_mel_channels = 80 , |
|
|
|
sampling_rate = 22050 , |
|
|
|
mel_fmin = 0.0 , |
|
|
|
mel_fmax = 8000.0 |
|
) |
| |
◆ spectral_normalize()
def layers.TacotronSTFT.spectral_normalize |
( |
|
self, |
|
|
|
magnitudes |
|
) |
| |
◆ spectral_de_normalize()
def layers.TacotronSTFT.spectral_de_normalize |
( |
|
self, |
|
|
|
magnitudes |
|
) |
| |
◆ mel_spectrogram()
def layers.TacotronSTFT.mel_spectrogram |
( |
|
self, |
|
|
|
y |
|
) |
| |
Computes mel-spectrograms from a batch of waves
PARAMS
------
y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1]
RETURNS
-------
mel_output: torch.FloatTensor of shape (B, n_mel_channels, T)
◆ n_mel_channels
layers.TacotronSTFT.n_mel_channels |
◆ sampling_rate
layers.TacotronSTFT.sampling_rate |
◆ stft_fn
layers.TacotronSTFT.stft_fn |
The documentation for this class was generated from the following file: