|
def | __init__ (self, n_mel_channels, n_frames_per_step, encoder_embedding_dim, attention_dim, attention_location_n_filters, attention_location_kernel_size, attention_rnn_dim, decoder_rnn_dim, prenet_dim, max_decoder_steps, gate_threshold, p_attention_dropout, p_decoder_dropout, early_stopping) |
|
def | get_go_frame (self, memory) |
|
def | initialize_decoder_states (self, memory) |
|
def | parse_decoder_inputs (self, decoder_inputs) |
|
def | parse_decoder_outputs (self, mel_outputs, gate_outputs, alignments) |
|
def | decode (self, decoder_input, attention_hidden, attention_cell, decoder_hidden, decoder_cell, attention_weights, attention_weights_cum, attention_context, memory, processed_memory, mask) |
|
def | forward (self, memory, decoder_inputs, memory_lengths) |
|
def | infer (self, memory, memory_lengths) |
|
◆ __init__()
def model.Decoder.__init__ |
( |
|
self, |
|
|
|
n_mel_channels, |
|
|
|
n_frames_per_step, |
|
|
|
encoder_embedding_dim, |
|
|
|
attention_dim, |
|
|
|
attention_location_n_filters, |
|
|
|
attention_location_kernel_size, |
|
|
|
attention_rnn_dim, |
|
|
|
decoder_rnn_dim, |
|
|
|
prenet_dim, |
|
|
|
max_decoder_steps, |
|
|
|
gate_threshold, |
|
|
|
p_attention_dropout, |
|
|
|
p_decoder_dropout, |
|
|
|
early_stopping |
|
) |
| |
◆ get_go_frame()
def model.Decoder.get_go_frame |
( |
|
self, |
|
|
|
memory |
|
) |
| |
Gets all zeros frames to use as first decoder input
PARAMS
------
memory: decoder outputs
RETURNS
-------
decoder_input: all zeros frames
◆ initialize_decoder_states()
def model.Decoder.initialize_decoder_states |
( |
|
self, |
|
|
|
memory |
|
) |
| |
Initializes attention rnn states, decoder rnn states, attention
weights, attention cumulative weights, attention context, stores memory
and stores processed memory
PARAMS
------
memory: Encoder outputs
mask: Mask for padded data if training, expects None for inference
◆ parse_decoder_inputs()
def model.Decoder.parse_decoder_inputs |
( |
|
self, |
|
|
|
decoder_inputs |
|
) |
| |
Prepares decoder inputs, i.e. mel outputs
PARAMS
------
decoder_inputs: inputs used for teacher-forced training, i.e. mel-specs
RETURNS
-------
inputs: processed decoder inputs
◆ parse_decoder_outputs()
def model.Decoder.parse_decoder_outputs |
( |
|
self, |
|
|
|
mel_outputs, |
|
|
|
gate_outputs, |
|
|
|
alignments |
|
) |
| |
Prepares decoder outputs for output
PARAMS
------
mel_outputs:
gate_outputs: gate output energies
alignments:
RETURNS
-------
mel_outputs:
gate_outpust: gate output energies
alignments:
◆ decode()
def model.Decoder.decode |
( |
|
self, |
|
|
|
decoder_input, |
|
|
|
attention_hidden, |
|
|
|
attention_cell, |
|
|
|
decoder_hidden, |
|
|
|
decoder_cell, |
|
|
|
attention_weights, |
|
|
|
attention_weights_cum, |
|
|
|
attention_context, |
|
|
|
memory, |
|
|
|
processed_memory, |
|
|
|
mask |
|
) |
| |
Decoder step using stored states, attention and memory
PARAMS
------
decoder_input: previous mel output
RETURNS
-------
mel_output:
gate_output: gate output energies
attention_weights:
◆ forward()
def model.Decoder.forward |
( |
|
self, |
|
|
|
memory, |
|
|
|
decoder_inputs, |
|
|
|
memory_lengths |
|
) |
| |
Decoder forward pass for training
PARAMS
------
memory: Encoder outputs
decoder_inputs: Decoder inputs for teacher forcing. i.e. mel-specs
memory_lengths: Encoder output lengths for attention masking.
RETURNS
-------
mel_outputs: mel outputs from the decoder
gate_outputs: gate outputs from the decoder
alignments: sequence of attention weights from the decoder
◆ infer()
def model.Decoder.infer |
( |
|
self, |
|
|
|
memory, |
|
|
|
memory_lengths |
|
) |
| |
Decoder inference
PARAMS
------
memory: Encoder outputs
RETURNS
-------
mel_outputs: mel outputs from the decoder
gate_outputs: gate outputs from the decoder
alignments: sequence of attention weights from the decoder
◆ n_mel_channels
model.Decoder.n_mel_channels |
◆ n_frames_per_step
model.Decoder.n_frames_per_step |
◆ encoder_embedding_dim
model.Decoder.encoder_embedding_dim |
◆ attention_rnn_dim
model.Decoder.attention_rnn_dim |
◆ decoder_rnn_dim
model.Decoder.decoder_rnn_dim |
◆ prenet_dim
◆ max_decoder_steps
model.Decoder.max_decoder_steps |
◆ gate_threshold
model.Decoder.gate_threshold |
◆ p_attention_dropout
model.Decoder.p_attention_dropout |
◆ p_decoder_dropout
model.Decoder.p_decoder_dropout |
◆ early_stopping
model.Decoder.early_stopping |
◆ prenet
◆ attention_rnn
model.Decoder.attention_rnn |
◆ attention_layer
model.Decoder.attention_layer |
◆ decoder_rnn
model.Decoder.decoder_rnn |
◆ linear_projection
model.Decoder.linear_projection |
◆ gate_layer
The documentation for this class was generated from the following file:
- demo/Tacotron2/tacotron2/model.py