◆ __init__()
def model.WaveGlow.__init__ |
( |
|
self, |
|
|
|
n_mel_channels, |
|
|
|
n_flows, |
|
|
|
n_group, |
|
|
|
n_early_every, |
|
|
|
n_early_size, |
|
|
|
WN_config |
|
) |
| |
◆ forward()
def model.WaveGlow.forward |
( |
|
self, |
|
|
|
forward_input |
|
) |
| |
forward_input[0] = mel_spectrogram: batch x n_mel_channels x frames
forward_input[1] = audio: batch x time
◆ infer()
def model.WaveGlow.infer |
( |
|
self, |
|
|
|
spect, |
|
|
|
sigma = 1.0 |
|
) |
| |
◆ remove_weightnorm()
def model.WaveGlow.remove_weightnorm |
( |
|
model | ) |
|
|
static |
◆ upsample
◆ n_flows
◆ n_group
◆ n_early_every
model.WaveGlow.n_early_every |
◆ n_early_size
model.WaveGlow.n_early_size |
◆ WN
◆ convinv
◆ n_remaining_channels
model.WaveGlow.n_remaining_channels |
The documentation for this class was generated from the following file:
- demo/Tacotron2/waveglow/model.py