TensorRT  7.2.1.6
NVIDIA TensorRT
Looking for a C++ dev who knows TensorRT?
I'm looking for work. Hire me!
nvinfer1::IDeconvolutionLayer Class Referenceabstract

A deconvolution layer in a network definition. More...

Inheritance diagram for nvinfer1::IDeconvolutionLayer:
Collaboration diagram for nvinfer1::IDeconvolutionLayer:

Public Member Functions

 __attribute__ ((deprecated)) virtual void setKernelSize(DimsHW kernelSize)=0
 Set the HW kernel size of the convolution. More...
 
 __attribute__ ((deprecated)) virtual DimsHW getKernelSize() const =0
 Get the HW kernel size of the deconvolution. More...
 
virtual void setNbOutputMaps (int32_t nbOutputMaps)=0
 Set the number of output feature maps for the deconvolution. More...
 
virtual int32_t getNbOutputMaps () const =0
 Get the number of output feature maps for the deconvolution. More...
 
 __attribute__ ((deprecated)) virtual void setStride(DimsHW stride)=0
 Get the stride of the deconvolution. More...
 
 __attribute__ ((deprecated)) virtual DimsHW getStride() const =0
 Get the stride of the deconvolution. More...
 
 __attribute__ ((deprecated)) virtual void setPadding(DimsHW padding)=0
 Set the padding of the deconvolution. More...
 
 __attribute__ ((deprecated)) virtual DimsHW getPadding() const =0
 Get the padding of the deconvolution. More...
 
virtual void setNbGroups (int32_t nbGroups)=0
 Set the number of groups for a deconvolution. More...
 
virtual int32_t getNbGroups () const =0
 Get the number of groups for a deconvolution. More...
 
virtual void setKernelWeights (Weights weights)=0
 Set the kernel weights for the deconvolution. More...
 
virtual Weights getKernelWeights () const =0
 Get the kernel weights for the deconvolution. More...
 
virtual void setBiasWeights (Weights weights)=0
 Set the bias weights for the deconvolution. More...
 
virtual Weights getBiasWeights () const =0
 Get the bias weights for the deconvolution. More...
 
virtual void setPrePadding (Dims padding)=0
 Set the multi-dimension pre-padding of the deconvolution. More...
 
virtual Dims getPrePadding () const =0
 Get the pre-padding. More...
 
virtual void setPostPadding (Dims padding)=0
 Set the multi-dimension post-padding of the deconvolution. More...
 
virtual Dims getPostPadding () const =0
 Get the padding. More...
 
virtual void setPaddingMode (PaddingMode paddingMode)=0
 Set the padding mode. More...
 
virtual PaddingMode getPaddingMode () const =0
 Get the padding mode. More...
 
virtual void setKernelSizeNd (Dims kernelSize)=0
 Set the multi-dimension kernel size of the deconvolution. More...
 
virtual Dims getKernelSizeNd () const =0
 Get the multi-dimension kernel size of the deconvolution. More...
 
virtual void setStrideNd (Dims stride)=0
 Set the multi-dimension stride of the deconvolution. More...
 
virtual Dims getStrideNd () const =0
 Get the multi-dimension stride of the deconvolution. More...
 
virtual void setPaddingNd (Dims padding)=0
 Set the multi-dimension padding of the deconvolution. More...
 
virtual Dims getPaddingNd () const =0
 Get the multi-dimension padding of the deconvolution. More...
 
void setInput (int32_t index, ITensor &tensor)=0
 Append or replace an input of this layer with a specific tensor. More...
 
virtual void setDilationNd (Dims dilation)=0
 Set the multi-dimension dilation of the deconvolution. More...
 
virtual Dims getDilationNd () const =0
 Get the multi-dimension dilation of the deconvolution. More...
 
virtual LayerType getType () const =0
 Return the type of a layer. More...
 
virtual void setName (const char *name)=0
 Set the name of a layer. More...
 
virtual const char * getName () const =0
 Return the name of a layer. More...
 
virtual int32_t getNbInputs () const =0
 Get the number of inputs of a layer. More...
 
virtual ITensorgetInput (int32_t index) const =0
 Get the layer input corresponding to the given index. More...
 
virtual int32_t getNbOutputs () const =0
 Get the number of outputs of a layer. More...
 
virtual ITensorgetOutput (int32_t index) const =0
 Get the layer output corresponding to the given index. More...
 
virtual void setPrecision (DataType dataType)=0
 Set the computational precision of this layer. More...
 
virtual DataType getPrecision () const =0
 get the computational precision of this layer More...
 
virtual bool precisionIsSet () const =0
 whether the computational precision has been set for this layer More...
 
virtual void resetPrecision ()=0
 reset the computational precision for this layer More...
 
virtual void setOutputType (int32_t index, DataType dataType)=0
 Set the output type of this layer. More...
 
virtual DataType getOutputType (int32_t index) const =0
 get the output type of this layer More...
 
virtual bool outputTypeIsSet (int32_t index) const =0
 whether the output type has been set for this layer More...
 
virtual void resetOutputType (int32_t index)=0
 reset the output type for this layer More...
 

Protected Member Functions

virtual ~IDeconvolutionLayer ()
 

Detailed Description

A deconvolution layer in a network definition.

The output size is defined using the formula set by INetworkDefinition::setDeconvolutionOutputDimensionsFormula().

Warning
Do not inherit from this class, as doing so will break forward-compatibility of the API and ABI.

Constructor & Destructor Documentation

◆ ~IDeconvolutionLayer()

virtual nvinfer1::IDeconvolutionLayer::~IDeconvolutionLayer ( )
inlineprotectedvirtual

Member Function Documentation

◆ __attribute__() [1/6]

nvinfer1::IDeconvolutionLayer::__attribute__ ( (deprecated)  )
pure virtual

Set the HW kernel size of the convolution.

If executing this layer on DLA, both height and width of kernel size must be in the range [1,32], or the combinations of [64, 96, 128] in one dimension and 1 in the other dimensions, i.e. [1x64] or [64x1] are valid, but not [64x64].

See also
getKernelSize()
Deprecated:
Superseded by setKernelSizeNd and will be removed in TensorRT 9.0.

◆ __attribute__() [2/6]

nvinfer1::IDeconvolutionLayer::__attribute__ ( (deprecated)  ) const
pure virtual

Get the HW kernel size of the deconvolution.

See also
setKernelSize()
Deprecated:
Superseded by getKernelSizeNd and will be removed in TensorRT 9.0.

◆ setNbOutputMaps()

virtual void nvinfer1::IDeconvolutionLayer::setNbOutputMaps ( int32_t  nbOutputMaps)
pure virtual

Set the number of output feature maps for the deconvolution.

If executing this layer on DLA, the number of output maps must be in the range [1,8192].

See also
getNbOutputMaps()

◆ getNbOutputMaps()

virtual int32_t nvinfer1::IDeconvolutionLayer::getNbOutputMaps ( ) const
pure virtual

Get the number of output feature maps for the deconvolution.

See also
setNbOutputMaps()

◆ __attribute__() [3/6]

nvinfer1::IDeconvolutionLayer::__attribute__ ( (deprecated)  )
pure virtual

Get the stride of the deconvolution.

If executing this layer on DLA, both height and width of stride must be in the range [1,32] or the combinations of [64, 96, 128] in one dimension and 1 in the other dimensions, i.e. [1x64] or [64x1] are valid, but not [64x64].

See also
setStride()
Deprecated:
Superseded by setStrideNd and will be removed in TensorRT 9.0.

◆ __attribute__() [4/6]

nvinfer1::IDeconvolutionLayer::__attribute__ ( (deprecated)  ) const
pure virtual

Get the stride of the deconvolution.

Default: (1,1)

Deprecated:
Superseded by getStrideNd and will be removed in TensorRT 9.0.

◆ __attribute__() [5/6]

nvinfer1::IDeconvolutionLayer::__attribute__ ( (deprecated)  )
pure virtual

Set the padding of the deconvolution.

The output will be trimmed by this number of elements on each side in the height and width directions. In other words, it resembles the inverse of a convolution layer with this padding size. Padding is symmetric, and negative padding is not supported.

Default: (0,0)

If executing this layer on DLA, both height and width of padding must be 0.

See also
getPadding()
Deprecated:
Superseded by setPaddingNd and will be removed in TensorRT 9.0.

◆ __attribute__() [6/6]

nvinfer1::IDeconvolutionLayer::__attribute__ ( (deprecated)  ) const
pure virtual

Get the padding of the deconvolution.

Default: (0, 0)

See also
setPadding()
Deprecated:
Superseded by getPaddingNd and will be removed in TensorRT 9.0.

◆ setNbGroups()

virtual void nvinfer1::IDeconvolutionLayer::setNbGroups ( int32_t  nbGroups)
pure virtual

Set the number of groups for a deconvolution.

The input tensor channels are divided into nbGroups groups, and a deconvolution is executed for each group, using a filter per group. The results of the group convolutions are concatenated to form the output.

If executing this layer on DLA, nbGroups must be one

Note
When using groups in int8 mode, the size of the groups (i.e. the channel count divided by the group count) must be a multiple of 4 for both input and output.

Default: 1

See also
getNbGroups()

◆ getNbGroups()

virtual int32_t nvinfer1::IDeconvolutionLayer::getNbGroups ( ) const
pure virtual

Get the number of groups for a deconvolution.

See also
setNbGroups()

◆ setKernelWeights()

virtual void nvinfer1::IDeconvolutionLayer::setKernelWeights ( Weights  weights)
pure virtual

Set the kernel weights for the deconvolution.

The weights are specified as a contiguous array in CKRS order, where C the number of input channels, K the number of output feature maps, and R and S are the height and width of the filter.

See also
getWeights()

◆ getKernelWeights()

virtual Weights nvinfer1::IDeconvolutionLayer::getKernelWeights ( ) const
pure virtual

Get the kernel weights for the deconvolution.

See also
setNbGroups()

◆ setBiasWeights()

virtual void nvinfer1::IDeconvolutionLayer::setBiasWeights ( Weights  weights)
pure virtual

Set the bias weights for the deconvolution.

Bias is optional. To omit bias, set the count value of the weights structure to zero.

The bias is applied per-feature-map, so the number of weights (if non-zero) must be equal to the number of output feature maps.

See also
getBiasWeights()

◆ getBiasWeights()

virtual Weights nvinfer1::IDeconvolutionLayer::getBiasWeights ( ) const
pure virtual

Get the bias weights for the deconvolution.

See also
getBiasWeights()

◆ setPrePadding()

virtual void nvinfer1::IDeconvolutionLayer::setPrePadding ( Dims  padding)
pure virtual

Set the multi-dimension pre-padding of the deconvolution.

The output will be trimmed by this number of elements on the start of every dimension. In other words, it resembles the inverse of a convolution layer with this padding size. Negative padding is not supported.

Default: (0, 0, ..., 0)

If executing this layer on DLA, padding must be 0.

See also
getPrePadding()

◆ getPrePadding()

virtual Dims nvinfer1::IDeconvolutionLayer::getPrePadding ( ) const
pure virtual

Get the pre-padding.

See also
setPrePadding()

◆ setPostPadding()

virtual void nvinfer1::IDeconvolutionLayer::setPostPadding ( Dims  padding)
pure virtual

Set the multi-dimension post-padding of the deconvolution.

The output will be trimmed by this number of elements on the end of every dimension. In other words, it resembles the inverse of a convolution layer with this padding size. Negative padding is not supported.

Default: (0, 0, ..., 0)

If executing this layer on DLA, padding must be 0.

See also
getPostPadding()

◆ getPostPadding()

virtual Dims nvinfer1::IDeconvolutionLayer::getPostPadding ( ) const
pure virtual

Get the padding.

See also
setPadding()

◆ setPaddingMode()

virtual void nvinfer1::IDeconvolutionLayer::setPaddingMode ( PaddingMode  paddingMode)
pure virtual

Set the padding mode.

Padding mode takes precedence if both setPaddingMode and setPre/PostPadding are used.

Default: kEXPLICIT_ROUND_DOWN

See also
getPaddingMode()

◆ getPaddingMode()

virtual PaddingMode nvinfer1::IDeconvolutionLayer::getPaddingMode ( ) const
pure virtual

Get the padding mode.

Default: kEXPLICIT_ROUND_DOWN

See also
setPaddingMode()

◆ setKernelSizeNd()

virtual void nvinfer1::IDeconvolutionLayer::setKernelSizeNd ( Dims  kernelSize)
pure virtual

Set the multi-dimension kernel size of the deconvolution.

If executing this layer on DLA, only support 2D kernel size, both height and width of kernel size must be in the range [1-32].

See also
getKernelSizeNd() setKernelSize() getKernelSize()

◆ getKernelSizeNd()

virtual Dims nvinfer1::IDeconvolutionLayer::getKernelSizeNd ( ) const
pure virtual

Get the multi-dimension kernel size of the deconvolution.

See also
setKernelSizeNd()

◆ setStrideNd()

virtual void nvinfer1::IDeconvolutionLayer::setStrideNd ( Dims  stride)
pure virtual

Set the multi-dimension stride of the deconvolution.

Default: (1, 1, ..., 1)

If executing this layer on DLA, only support 2D stride, both height and width of stride must be in the range [1-32].

See also
getStrideNd() setStride() getStride()

◆ getStrideNd()

virtual Dims nvinfer1::IDeconvolutionLayer::getStrideNd ( ) const
pure virtual

Get the multi-dimension stride of the deconvolution.

See also
setStrideNd()

◆ setPaddingNd()

virtual void nvinfer1::IDeconvolutionLayer::setPaddingNd ( Dims  padding)
pure virtual

Set the multi-dimension padding of the deconvolution.

The output will be trimmed by this number of elements on both sides of every dimension. In other words, it resembles the inverse of a convolution layer with this padding size. Padding is symmetric, and negative padding is not supported.

Default: (0, 0, ..., 0)

If executing this layer on DLA, padding must be 0.

See also
getPaddingNd() setPadding() getPadding()

◆ getPaddingNd()

virtual Dims nvinfer1::IDeconvolutionLayer::getPaddingNd ( ) const
pure virtual

Get the multi-dimension padding of the deconvolution.

If the padding is asymmetric, the pre-padding is returned.

See also
setPaddingNd()

◆ setInput()

void nvinfer1::IDeconvolutionLayer::setInput ( int32_t  index,
ITensor tensor 
)
pure virtual

Append or replace an input of this layer with a specific tensor.

Parameters
indexthe index of the input to modify.
tensorthe new input tensor

For a IDeconvolutionLayer, only index 0 is valid unless explicit precision mode is enabled. With explicit precision mode, values 0-1 are valid where value 1 overrides kernel weights. Kernel weights tensor (computed at build-time) must be an output of dequantize scale layer (i.e. a scale layer with int8 input and float output) in explicit precision network. Conversely, this input tensor can be overridden via appropriate set call. The indices are as follows:

  • 0: The input activation tensor.
  • 1: The kernel weights tensor (a constant tensor).

If this function is called with a value greater than 0, then the function getNbInputs() changes

Implements nvinfer1::ILayer.

◆ setDilationNd()

virtual void nvinfer1::IDeconvolutionLayer::setDilationNd ( Dims  dilation)
pure virtual

Set the multi-dimension dilation of the deconvolution.

Default: (1, 1, ..., 1)

See also
getDilationNd()

◆ getDilationNd()

virtual Dims nvinfer1::IDeconvolutionLayer::getDilationNd ( ) const
pure virtual

Get the multi-dimension dilation of the deconvolution.

See also
setDilationNd()

◆ getType()

virtual LayerType nvinfer1::ILayer::getType ( ) const
pure virtualinherited

Return the type of a layer.

See also
LayerType

◆ setName()

virtual void nvinfer1::ILayer::setName ( const char *  name)
pure virtualinherited

Set the name of a layer.

This method copies the name string.

See also
getName()
Here is the caller graph for this function:

◆ getName()

virtual const char* nvinfer1::ILayer::getName ( ) const
pure virtualinherited

Return the name of a layer.

See also
setName()
Here is the caller graph for this function:

◆ getNbInputs()

virtual int32_t nvinfer1::ILayer::getNbInputs ( ) const
pure virtualinherited

Get the number of inputs of a layer.

◆ getInput()

virtual ITensor* nvinfer1::ILayer::getInput ( int32_t  index) const
pure virtualinherited

Get the layer input corresponding to the given index.

Parameters
indexThe index of the input tensor.
Returns
The input tensor, or nullptr if the index is out of range or the tensor is optional (ISliceLayer, IRNNLayer and IRNNv2Layer).

◆ getNbOutputs()

virtual int32_t nvinfer1::ILayer::getNbOutputs ( ) const
pure virtualinherited

Get the number of outputs of a layer.

Here is the caller graph for this function:

◆ getOutput()

virtual ITensor* nvinfer1::ILayer::getOutput ( int32_t  index) const
pure virtualinherited

Get the layer output corresponding to the given index.

Returns
The indexed output tensor, or nullptr if the index is out of range or the tensor is optional (IRNNLayer and IRNNv2Layer).
Here is the caller graph for this function:

◆ setPrecision()

virtual void nvinfer1::ILayer::setPrecision ( DataType  dataType)
pure virtualinherited

Set the computational precision of this layer.

Setting the precision allows TensorRT to choose implementation which run at this computational precision. Layer input type would also get inferred from layer computational precision. TensorRT could still choose a non-conforming fastest implementation ignoring set layer precision. Use BuilderFlag::kSTRICT_TYPES to force choose implementations with requested precision. In case no implementation is found with requested precision, TensorRT would choose available fastest implementation. If precision is not set, TensorRT will select the layer computational precision and layer input type based on performance considerations and the flags specified to the builder.

Parameters
precisionthe computational precision.
See also
getPrecision() precisionIsSet() resetPrecision()

◆ getPrecision()

virtual DataType nvinfer1::ILayer::getPrecision ( ) const
pure virtualinherited

get the computational precision of this layer

Returns
the computational precision
See also
setPrecision() precisionIsSet() resetPrecision()

◆ precisionIsSet()

virtual bool nvinfer1::ILayer::precisionIsSet ( ) const
pure virtualinherited

whether the computational precision has been set for this layer

Returns
whether the computational precision has been explicitly set
See also
setPrecision() getPrecision() resetPrecision()

◆ resetPrecision()

virtual void nvinfer1::ILayer::resetPrecision ( )
pure virtualinherited

reset the computational precision for this layer

See also
setPrecision() getPrecision() precisionIsSet()

◆ setOutputType()

virtual void nvinfer1::ILayer::setOutputType ( int32_t  index,
DataType  dataType 
)
pure virtualinherited

Set the output type of this layer.

Setting the output type constrains TensorRT to choose implementations which generate output data with the given type. If it is not set, TensorRT will select output type based on layer computational precision. TensorRT could still choose non-conforming output type based on fastest implementation. Use BuilderFlag::kSTRICT_TYPES to force choose requested output type. In case layer precision is not specified, output type would depend on chosen implementation based on performance considerations and the flags specified to the builder.

This method cannot be used to set the data type of the second output tensor of the TopK layer. The data type of the second output tensor of the topK layer is always Int32. Also the output type of all layers that are shape operations must be DataType::kINT32, and all attempts to set the output type to some other data type will be ignored except for issuing an error message.

Note that the layer output type is generally not identical to the data type of the output tensor, as TensorRT may insert implicit reformatting operations to convert the former to the latter. Calling layer->setOutputType(i, type) has no effect on the data type of the i-th output tensor of layer, and users need to call layer->getOutput(i)->setType(type) to change the tensor data type. This is particularly relevant if the tensor is marked as a network output, since only setType() [but not setOutputType()] will affect the data representation in the corresponding output binding.

Parameters
indexthe index of the output to set
dataTypethe type of the output
See also
getOutputType() outputTypeIsSet() resetOutputType()

◆ getOutputType()

virtual DataType nvinfer1::ILayer::getOutputType ( int32_t  index) const
pure virtualinherited

get the output type of this layer

Parameters
indexthe index of the output
Returns
the output precision. If no precision has been set, DataType::kFLOAT will be returned, unless the output type is inherently DataType::kINT32.
See also
getOutputType() outputTypeIsSet() resetOutputType()

◆ outputTypeIsSet()

virtual bool nvinfer1::ILayer::outputTypeIsSet ( int32_t  index) const
pure virtualinherited

whether the output type has been set for this layer

Parameters
indexthe index of the output
Returns
whether the output type has been explicitly set
See also
setOutputType() getOutputType() resetOutputType()

◆ resetOutputType()

virtual void nvinfer1::ILayer::resetOutputType ( int32_t  index)
pure virtualinherited

reset the output type for this layer

Parameters
indexthe index of the output
See also
setOutputType() getOutputType() outputTypeIsSet()

The documentation for this class was generated from the following file: