TensorRT  7.2.1.6
NVIDIA TensorRT
Looking for a C++ dev who knows TensorRT?
I'm looking for work. Hire me!
nvinfer1::IResizeLayer Class Referenceabstract

A resize layer in a network definition. More...

Inheritance diagram for nvinfer1::IResizeLayer:
Collaboration diagram for nvinfer1::IResizeLayer:

Public Member Functions

virtual void setOutputDimensions (Dims dimensions)=0
 Set the output dimensions. More...
 
virtual Dims getOutputDimensions () const =0
 Get the output dimensions. More...
 
virtual void setScales (const float *scales, int32_t nbScales)=0
 Set the resize scales. More...
 
virtual int32_t getScales (int32_t size, float *scales) const =0
 Copies resize scales to scales[0, ..., nbScales-1], where nbScales is the number of scales that were set. More...
 
virtual void setResizeMode (ResizeMode resizeMode)=0
 Set resize mode for an input tensor. More...
 
virtual ResizeMode getResizeMode () const =0
 Get resize mode for an input tensor. More...
 
virtual void setAlignCorners (bool alignCorners)=0
 Set whether to align corners while resizing. More...
 
virtual bool getAlignCorners () const =0
 True if align corners has been set. More...
 
void setInput (int32_t index, ITensor &tensor)=0
 Append or replace an input of this layer with a specific tensor. More...
 
virtual LayerType getType () const =0
 Return the type of a layer. More...
 
virtual void setName (const char *name)=0
 Set the name of a layer. More...
 
virtual const char * getName () const =0
 Return the name of a layer. More...
 
virtual int32_t getNbInputs () const =0
 Get the number of inputs of a layer. More...
 
virtual ITensorgetInput (int32_t index) const =0
 Get the layer input corresponding to the given index. More...
 
virtual int32_t getNbOutputs () const =0
 Get the number of outputs of a layer. More...
 
virtual ITensorgetOutput (int32_t index) const =0
 Get the layer output corresponding to the given index. More...
 
virtual void setPrecision (DataType dataType)=0
 Set the computational precision of this layer. More...
 
virtual DataType getPrecision () const =0
 get the computational precision of this layer More...
 
virtual bool precisionIsSet () const =0
 whether the computational precision has been set for this layer More...
 
virtual void resetPrecision ()=0
 reset the computational precision for this layer More...
 
virtual void setOutputType (int32_t index, DataType dataType)=0
 Set the output type of this layer. More...
 
virtual DataType getOutputType (int32_t index) const =0
 get the output type of this layer More...
 
virtual bool outputTypeIsSet (int32_t index) const =0
 whether the output type has been set for this layer More...
 
virtual void resetOutputType (int32_t index)=0
 reset the output type for this layer More...
 

Protected Member Functions

virtual ~IResizeLayer ()
 

Detailed Description

A resize layer in a network definition.

Resize layer can be used for resizing a ND tensor.

Resize layer currently supports the following configurations:

Default resize mode is ResizeMode::kNEAREST. Resize layer provides two ways to resize tensor dimensions.

  • Set output dimensions directly. It can be done for static as well as dynamic resize layer. Static resize layer requires output dimensions to be known at build-time. Dynamic resize layer requires output dimensions to be set as one of the input tensors.
  • Set scales for resize. Each output dimension is calculated as floor(input dimension * scale). Only static resize layer allows setting scales where the scales are known at build-time.
Warning
Do not inherit from this class, as doing so will break forward-compatibility of the API and ABI.

Constructor & Destructor Documentation

◆ ~IResizeLayer()

virtual nvinfer1::IResizeLayer::~IResizeLayer ( )
inlineprotectedvirtual

Member Function Documentation

◆ setOutputDimensions()

virtual void nvinfer1::IResizeLayer::setOutputDimensions ( Dims  dimensions)
pure virtual

Set the output dimensions.

Parameters
dimensionsThe output dimensions. Number of output dimensions must be the same as the number of input dimensions.

If there is a second input, i.e. resize layer is dynamic, calling setOutputDimensions() is an error and does not update the dimensions.

Output dimensions can be specified directly, or via scale factors relative to input dimensions. Scales for resize can be provided using setScales().

See also
setScales
getOutputDimensions

◆ getOutputDimensions()

virtual Dims nvinfer1::IResizeLayer::getOutputDimensions ( ) const
pure virtual

Get the output dimensions.

Returns
The output dimensions.

◆ setScales()

virtual void nvinfer1::IResizeLayer::setScales ( const float *  scales,
int32_t  nbScales 
)
pure virtual

Set the resize scales.

Parameters
scalesAn array of resize scales.
nbScalesNumber of scales. Number of scales must be equal to the number of input dimensions.

If there is a second input, i.e. resize layer is dynamic, calling setScales() is an error and does not update the scales.

Output dimensions are calculated as follows: outputDims[i] = floor(inputDims[i] * scales[i])

Output dimensions can be specified directly, or via scale factors relative to input dimensions. Output dimensions can be provided directly using setOutputDimensions().

See also
setOutputDimensions
getScales

◆ getScales()

virtual int32_t nvinfer1::IResizeLayer::getScales ( int32_t  size,
float *  scales 
) const
pure virtual

Copies resize scales to scales[0, ..., nbScales-1], where nbScales is the number of scales that were set.

Parameters
sizeThe number of scales to get. If size != nbScales, no scales will be copied.
scalesPointer to where to copy the scales. Scales will be copied only if size == nbScales and scales != nullptr.

In case the size is not known consider using size = 0 and scales = nullptr. This method will return the number of resize scales.

Returns
The number of resize scales i.e. nbScales if scales were set. Return -1 in case no scales were set or resize layer is used in dynamic mode.

◆ setResizeMode()

virtual void nvinfer1::IResizeLayer::setResizeMode ( ResizeMode  resizeMode)
pure virtual

Set resize mode for an input tensor.

Supported resize modes are Nearest Neighbor and Linear.

See also
ResizeMode

◆ getResizeMode()

virtual ResizeMode nvinfer1::IResizeLayer::getResizeMode ( ) const
pure virtual

Get resize mode for an input tensor.

Returns
The resize mode.

◆ setAlignCorners()

virtual void nvinfer1::IResizeLayer::setAlignCorners ( bool  alignCorners)
pure virtual

Set whether to align corners while resizing.

If true, the centers of the 4 corner pixels of both input and output tensors are aligned i.e. preserves the values of corner pixels.

Default: false.

◆ getAlignCorners()

virtual bool nvinfer1::IResizeLayer::getAlignCorners ( ) const
pure virtual

True if align corners has been set.

Returns
True if align corners has been set, false otherwise.

◆ setInput()

void nvinfer1::IResizeLayer::setInput ( int32_t  index,
ITensor tensor 
)
pure virtual

Append or replace an input of this layer with a specific tensor.

Parameters
indexthe index of the input to modify.
tensorthe new input tensor

Sets the input tensor for the given index. The index must be 0 for a static resize layer. A static resize layer is converted to a dynamic resize layer by calling setInput with an index 1. A dynamic resize layer cannot be converted back to a static resize layer.

For a dynamic resize layer, the values 0 and 1 are valid. The indices in the dynamic case are as follows:

  • 0: Data or Shape tensor to be resized.
  • 1: The output dimensions, as a 1D Int32 shape tensor.

If this function is called with a value 1, then the function getNbInputs() changes from returning 1 to 2.

Implements nvinfer1::ILayer.

◆ getType()

virtual LayerType nvinfer1::ILayer::getType ( ) const
pure virtualinherited

Return the type of a layer.

See also
LayerType

◆ setName()

virtual void nvinfer1::ILayer::setName ( const char *  name)
pure virtualinherited

Set the name of a layer.

This method copies the name string.

See also
getName()
Here is the caller graph for this function:

◆ getName()

virtual const char* nvinfer1::ILayer::getName ( ) const
pure virtualinherited

Return the name of a layer.

See also
setName()
Here is the caller graph for this function:

◆ getNbInputs()

virtual int32_t nvinfer1::ILayer::getNbInputs ( ) const
pure virtualinherited

Get the number of inputs of a layer.

◆ getInput()

virtual ITensor* nvinfer1::ILayer::getInput ( int32_t  index) const
pure virtualinherited

Get the layer input corresponding to the given index.

Parameters
indexThe index of the input tensor.
Returns
The input tensor, or nullptr if the index is out of range or the tensor is optional (ISliceLayer, IRNNLayer and IRNNv2Layer).

◆ getNbOutputs()

virtual int32_t nvinfer1::ILayer::getNbOutputs ( ) const
pure virtualinherited

Get the number of outputs of a layer.

Here is the caller graph for this function:

◆ getOutput()

virtual ITensor* nvinfer1::ILayer::getOutput ( int32_t  index) const
pure virtualinherited

Get the layer output corresponding to the given index.

Returns
The indexed output tensor, or nullptr if the index is out of range or the tensor is optional (IRNNLayer and IRNNv2Layer).
Here is the caller graph for this function:

◆ setPrecision()

virtual void nvinfer1::ILayer::setPrecision ( DataType  dataType)
pure virtualinherited

Set the computational precision of this layer.

Setting the precision allows TensorRT to choose implementation which run at this computational precision. Layer input type would also get inferred from layer computational precision. TensorRT could still choose a non-conforming fastest implementation ignoring set layer precision. Use BuilderFlag::kSTRICT_TYPES to force choose implementations with requested precision. In case no implementation is found with requested precision, TensorRT would choose available fastest implementation. If precision is not set, TensorRT will select the layer computational precision and layer input type based on performance considerations and the flags specified to the builder.

Parameters
precisionthe computational precision.
See also
getPrecision() precisionIsSet() resetPrecision()

◆ getPrecision()

virtual DataType nvinfer1::ILayer::getPrecision ( ) const
pure virtualinherited

get the computational precision of this layer

Returns
the computational precision
See also
setPrecision() precisionIsSet() resetPrecision()

◆ precisionIsSet()

virtual bool nvinfer1::ILayer::precisionIsSet ( ) const
pure virtualinherited

whether the computational precision has been set for this layer

Returns
whether the computational precision has been explicitly set
See also
setPrecision() getPrecision() resetPrecision()

◆ resetPrecision()

virtual void nvinfer1::ILayer::resetPrecision ( )
pure virtualinherited

reset the computational precision for this layer

See also
setPrecision() getPrecision() precisionIsSet()

◆ setOutputType()

virtual void nvinfer1::ILayer::setOutputType ( int32_t  index,
DataType  dataType 
)
pure virtualinherited

Set the output type of this layer.

Setting the output type constrains TensorRT to choose implementations which generate output data with the given type. If it is not set, TensorRT will select output type based on layer computational precision. TensorRT could still choose non-conforming output type based on fastest implementation. Use BuilderFlag::kSTRICT_TYPES to force choose requested output type. In case layer precision is not specified, output type would depend on chosen implementation based on performance considerations and the flags specified to the builder.

This method cannot be used to set the data type of the second output tensor of the TopK layer. The data type of the second output tensor of the topK layer is always Int32. Also the output type of all layers that are shape operations must be DataType::kINT32, and all attempts to set the output type to some other data type will be ignored except for issuing an error message.

Note that the layer output type is generally not identical to the data type of the output tensor, as TensorRT may insert implicit reformatting operations to convert the former to the latter. Calling layer->setOutputType(i, type) has no effect on the data type of the i-th output tensor of layer, and users need to call layer->getOutput(i)->setType(type) to change the tensor data type. This is particularly relevant if the tensor is marked as a network output, since only setType() [but not setOutputType()] will affect the data representation in the corresponding output binding.

Parameters
indexthe index of the output to set
dataTypethe type of the output
See also
getOutputType() outputTypeIsSet() resetOutputType()

◆ getOutputType()

virtual DataType nvinfer1::ILayer::getOutputType ( int32_t  index) const
pure virtualinherited

get the output type of this layer

Parameters
indexthe index of the output
Returns
the output precision. If no precision has been set, DataType::kFLOAT will be returned, unless the output type is inherently DataType::kINT32.
See also
getOutputType() outputTypeIsSet() resetOutputType()

◆ outputTypeIsSet()

virtual bool nvinfer1::ILayer::outputTypeIsSet ( int32_t  index) const
pure virtualinherited

whether the output type has been set for this layer

Parameters
indexthe index of the output
Returns
whether the output type has been explicitly set
See also
setOutputType() getOutputType() resetOutputType()

◆ resetOutputType()

virtual void nvinfer1::ILayer::resetOutputType ( int32_t  index)
pure virtualinherited

reset the output type for this layer

Parameters
indexthe index of the output
See also
setOutputType() getOutputType() outputTypeIsSet()

The documentation for this class was generated from the following file: