TensorRT  7.2.1.6
NVIDIA TensorRT
Looking for a C++ dev who knows TensorRT?
I'm looking for work. Hire me!
All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator Friends Pages
polygraphy.backend.tf.loader.UseTfTrt Class Reference
Inheritance diagram for polygraphy.backend.tf.loader.UseTfTrt:
Collaboration diagram for polygraphy.backend.tf.loader.UseTfTrt:

Public Member Functions

def __init__ (self, graph, max_workspace_size=None, fp16=None, int8=None, max_batch_size=None, is_dynamic_op=False, minimum_segment_size=None)
 
def __call__ (self)
 

Public Attributes

 max_workspace_size
 
 fp16
 
 int8
 
 max_batch_size
 
 is_dynamic_op
 
 minimum_segment_size
 

Private Attributes

 _graph
 

Constructor & Destructor Documentation

◆ __init__()

def polygraphy.backend.tf.loader.UseTfTrt.__init__ (   self,
  graph,
  max_workspace_size = None,
  fp16 = None,
  int8 = None,
  max_batch_size = None,
  is_dynamic_op = False,
  minimum_segment_size = None 
)
Functor that optimizes a TensorFlow model using TF-TRT.

Args:
    graph (Callable() -> Tuple[tf.Graph, Sequence[str]]):
    A callable that can supply a tuple containing a TensorFlow graph and output names.
    max_workspace_size (int): The maximum workspace size.
    fp16 (bool): Whether to run in FP16 mode.
    max_batch_size (int): The maximum batch size.

Member Function Documentation

◆ __call__()

def polygraphy.backend.tf.loader.UseTfTrt.__call__ (   self)
Optimizes a TensorFlow model using TF-TRT.

Returns:
    Tuple[tf.Graph, Sequence[str]]: The TensorFlow graph, and the names of its outputs.

Member Data Documentation

◆ _graph

polygraphy.backend.tf.loader.UseTfTrt._graph
private

◆ max_workspace_size

polygraphy.backend.tf.loader.UseTfTrt.max_workspace_size

◆ fp16

polygraphy.backend.tf.loader.UseTfTrt.fp16

◆ int8

polygraphy.backend.tf.loader.UseTfTrt.int8

◆ max_batch_size

polygraphy.backend.tf.loader.UseTfTrt.max_batch_size

◆ is_dynamic_op

polygraphy.backend.tf.loader.UseTfTrt.is_dynamic_op

◆ minimum_segment_size

polygraphy.backend.tf.loader.UseTfTrt.minimum_segment_size

The documentation for this class was generated from the following file: