◆ __init__()
def polygraphy.backend.tf.loader.UseTfTrt.__init__ |
( |
|
self, |
|
|
|
graph, |
|
|
|
max_workspace_size = None , |
|
|
|
fp16 = None , |
|
|
|
int8 = None , |
|
|
|
max_batch_size = None , |
|
|
|
is_dynamic_op = False , |
|
|
|
minimum_segment_size = None |
|
) |
| |
Functor that optimizes a TensorFlow model using TF-TRT.
Args:
graph (Callable() -> Tuple[tf.Graph, Sequence[str]]):
A callable that can supply a tuple containing a TensorFlow graph and output names.
max_workspace_size (int): The maximum workspace size.
fp16 (bool): Whether to run in FP16 mode.
max_batch_size (int): The maximum batch size.
◆ __call__()
def polygraphy.backend.tf.loader.UseTfTrt.__call__ |
( |
|
self | ) |
|
Optimizes a TensorFlow model using TF-TRT.
Returns:
Tuple[tf.Graph, Sequence[str]]: The TensorFlow graph, and the names of its outputs.
◆ _graph
polygraphy.backend.tf.loader.UseTfTrt._graph |
|
private |
◆ max_workspace_size
polygraphy.backend.tf.loader.UseTfTrt.max_workspace_size |
◆ fp16
polygraphy.backend.tf.loader.UseTfTrt.fp16 |
◆ int8
polygraphy.backend.tf.loader.UseTfTrt.int8 |
◆ max_batch_size
polygraphy.backend.tf.loader.UseTfTrt.max_batch_size |
◆ is_dynamic_op
polygraphy.backend.tf.loader.UseTfTrt.is_dynamic_op |
◆ minimum_segment_size
polygraphy.backend.tf.loader.UseTfTrt.minimum_segment_size |
The documentation for this class was generated from the following file: