◆ test_simple_run()
def tests.tensor_quant_test.TestTensorQuant.test_simple_run |
( |
|
self | ) |
|
quantizer passes gradcheck
◆ test_per_tensor_scale()
def tests.tensor_quant_test.TestTensorQuant.test_per_tensor_scale |
( |
|
self | ) |
|
tensor_quant matches numpy quantization
◆ test_per_channel_scale()
def tests.tensor_quant_test.TestTensorQuant.test_per_channel_scale |
( |
|
self | ) |
|
fake_tensor_quant performs per channel quantization
◆ test_backward()
def tests.tensor_quant_test.TestTensorQuant.test_backward |
( |
|
self | ) |
|
tensor_quant implements straight through estimator on the backward pass
Note: this does not work for integer output_dtype
◆ test_unsigned()
def tests.tensor_quant_test.TestTensorQuant.test_unsigned |
( |
|
self | ) |
|
◆ test_overflow_fp16()
def tests.tensor_quant_test.TestTensorQuant.test_overflow_fp16 |
( |
|
self | ) |
|
◆ test_clip_gradient()
def tests.tensor_quant_test.TestTensorQuant.test_clip_gradient |
( |
|
self | ) |
|
◆ test_full_range()
def tests.tensor_quant_test.TestTensorQuant.test_full_range |
( |
|
self | ) |
|
fake_tensor_quant uses the full integer range when narrow=False
The documentation for this class was generated from the following file: