This repository contains the Open Source Software (OSS) components of NVIDIA TensorRT. Included are the sources for TensorRT plugins and parsers (Caffe and ONNX), as well as sample applications demonstrating usage and capabilities of the TensorRT platform. These open source software components are a subset of the TensorRT General Availability (GA) release with some extensions and bug-fixes.
To build the TensorRT-OSS components, you will first need the following software packages.
TensorRT GA build
System Packages
Optional Packages
NOTE: onnx-tensorrt, cub, and protobuf packages are downloaded along with TensorRT OSS, and not required to be installed.
pwd
``` On Windows: Powershell ```powershell git clone -b master https://github.com/nvidia/TensorRT TensorRT cd TensorRT git submodule update –init –recursive #### Download TensorRT GA To build TensorRT OSS, obtain the corresponding TensorRT GA build from NVIDIA Developer Zone.
Example: Ubuntu 18.04 on x86-64 with cuda-11.1
Download and extract the latest TensorRT 7.2.1 GA package for Ubuntu 18.04 and CUDA 11.1 ```bash cd ~/Downloads tar -xvzf TensorRT-7.2.1.6.Ubuntu-18.04.x86_64-gnu.cuda-11.1.cudnn8.0.tar.gz export TRT_RELEASE=pwd
/TensorRT-7.2.1.6 ``` Example: Ubuntu 18.04 on PowerPC with cuda-11.0
Download and extract the latest TensorRT 7.2.1 GA package for Ubuntu 18.04 and CUDA 11.0 ```bash cd ~/Downloads tar -xvzf TensorRT-7.2.1.6.Ubuntu-18.04.powerpc64le-gnu.cuda-11.0.cudnn8.0.tar.gz export TRT_RELEASE=pwd
/TensorRT-7.2.1.6 ``` Example: CentOS/RedHat 7 on x86-64 with cuda-11.0
Download and extract the TensorRT 7.2.1 GA for CentOS/RedHat 7 and CUDA 11.0 tar package ```bash cd ~/Downloads tar -xvzf TensorRT-7.2.1.6.CentOS-7.6.x86_64-gnu.cuda-11.0.cudnn8.0.tar.gz export TRT_RELEASE=pwd
/TensorRT-7.2.1.6 ``` Example: Ubuntu18.04 Cross-Compile for QNX with cuda-10.2
Download and extract the TensorRT 7.2.1 GA for QNX and CUDA 10.2 tar package ```bash cd ~/Downloads tar -xvzf TensorRT-7.2.1.6.Ubuntu-18.04.aarch64-qnx.cuda-10.2.cudnn7.6.tar.gz export TRT_RELEASE=pwd
/TensorRT-7.2.1.6 export QNX_HOST=/<path-to-qnx-toolchain>/host/linux/x86_64 export QNX_TARGET=/<path-to-qnx-toolchain>/target/qnx7 ``` Example: Windows on x86-64 with cuda-11.0
Download and extract the TensorRT 7.2.1 GA for Windows and CUDA 11.0 zip package and add msbuild to PATH ```powershell cd ~\Downloads Expand-Archive .\TensorRT-7.2.1.6.Windows10.x86_64.cuda-11.0.cudnn8.0.zip
(Get-Location)\TensorRT-7.2.1.6' $Env:PATH += 'C:\Program Files (x86)\Microsoft Visual Studio\2017\Professional\MSBuild\15.0\Bin\' ```
Linux Jetpack 4.4
), and click Continue.Download & Install Options
change the download folder and select Download now, Install later
. Agree to the license terms and click Continue.$TRT_SOURCE/docker/jetpack_files
folder.For native builds, install the prerequisite System Packages. Alternatively (recommended for non-Windows builds), install Docker and generate a build container as described below:
#### Generate the TensorRT-OSS build container. The TensorRT-OSS build container can be generated using the Dockerfiles and build script included with TensorRT-OSS. The build container is bundled with packages and environment required for building TensorRT OSS.
Example: Ubuntu 18.04 on x86-64 with cuda-11.1 ```bash ./docker/build.sh –file docker/ubuntu.Dockerfile –tag tensorrt-ubuntu –os 18.04 –cuda 11.1 ``` Example: Ubuntu 18.04 on PowerPC with cuda-11.0 ```bash ./docker/build.sh –file docker/ubuntu-cross-ppc64le.Dockerfile –tag tensorrt-ubuntu-ppc –os 18.04 –cuda 11.0 ``` Example: CentOS/RedHat 7 on x86-64 with cuda-11.0 ```bash ./docker/build.sh –file docker/centos.Dockerfile –tag tensorrt-centos –os 7 –cuda 11.0 ``` Example: Ubuntu 18.04 Cross-Compile for Jetson (arm64) with cuda-10.2 (JetPack) ```bash ./docker/build.sh –file docker/ubuntu-cross-aarch64.Dockerfile –tag tensorrt-cross-jetpack –os 18.04 –cuda 10.2 ```
nvidia-docker2
and --runtime=nvidia
flag for docker run commands. On versions >= 19.03, you need the nvidia-container-toolkit
package and --gpus all
flag.Generate Makefiles or VS project (Windows) and build.
Example: Linux (x86-64) build with default cuda-11.1 ```bash cd $TRT_SOURCE mkdir -p build && cd build cmake .. -DTRT_LIB_DIR=$TRT_RELEASE/lib -DTRT_OUT_DIR=pwd
/out make -j ``` Example: Native build on Jetson (arm64) with cuda-10.2 ```bash cd $TRT_SOURCE mkdir -p build && cd build cmake .. -DTRT_LIB_DIR=$TRT_RELEASE/lib -DTRT_OUT_DIR=pwd
/out -DTRT_PLATFORM_ID=aarch64 -DCUDA_VERSION=10.2 make -j ``` Example: Ubuntu 18.04 Cross-Compile for Jetson (arm64) with cuda-10.2 (JetPack) ```bash cd $TRT_SOURCE mkdir -p build && cd build cmake .. -DTRT_LIB_DIR=$TRT_RELEASE/lib -DTRT_OUT_DIR=pwd
/out -DCMAKE_TOOLCHAIN_FILE=$TRT_SOURCE/cmake/toolchains/cmake_aarch64.toolchain -DCUDA_VERSION=10.2 make -j ``` Example: Cross-Compile for QNX with cuda-10.2 ```bash cd $TRT_SOURCE mkdir -p build && cd build cmake .. -DTRT_LIB_DIR=$TRT_RELEASE/lib -DTRT_OUT_DIR=pwd
/out -DCMAKE_TOOLCHAIN_FILE=$TRT_SOURCE/cmake/toolchains/cmake_qnx.toolchain -DCUDA_VERSION=10.2 make -j ``` Example: Windows (x86-64) build in Powershell ```powershell cd $Env:TRT_SOURCE mkdir -p build ; cd build cmake .. -DTRT_LIB_DIR=
(Get-Location)\out' -DCMAKE_TOOLCHAIN_FILE=..\cmake\toolchains\cmake_x64_win.toolchain msbuild ALL_BUILD.vcxproj ``` > NOTE:
-DCUDA_VERSION=10.2
to the cmake command.ln -s $TRT_OUT_DIR/libnvinfer_plugin.so $TRT_OUT_DIR/libnvinfer_plugin.so.7
TRT_LIB_DIR
: Path to the TensorRT installation directory containing libraries.TRT_OUT_DIR
: Output directory where generated build artifacts will be copied.CMAKE_BUILD_TYPE
: Specify if binaries generated are for release or debug (contain debug symbols). Values consists of [Release
] | Debug
CUDA_VERISON
: The version of CUDA to target, for example [11.1
].CUDNN_VERSION
: The version of cuDNN to target, for example [8.0
].NVCR_SUFFIX
: Optional nvcr/cuda image suffix. Set to "-rc" for CUDA11 RC builds until general availability. Blank by default.PROTOBUF_VERSION
: The version of Protobuf to use, for example [3.0.0
]. Note: Changing this will not configure CMake to use a system version of Protobuf, it will configure CMake to download and try building that version.CMAKE_TOOLCHAIN_FILE
: The path to a toolchain file for cross compilation.BUILD_PARSERS
: Specify if the parsers should be built, for example [ON
] | OFF
. If turned OFF, CMake will try to find precompiled versions of the parser libraries to use in compiling samples. First in ${TRT_LIB_DIR}
, then on the system. If the build type is Debug, then it will prefer debug builds of the libraries before release versions if available.BUILD_PLUGINS
: Specify if the plugins should be built, for example [ON
] | OFF
. If turned OFF, CMake will try to find a precompiled version of the plugin library to use in compiling samples. First in ${TRT_LIB_DIR}
, then on the system. If the build type is Debug, then it will prefer debug builds of the libraries before release versions if available.BUILD_SAMPLES
: Specify if the samples should be built, for example [ON
] | OFF
.CUB_VERSION
: The version of CUB to use, for example [1.8.0
].GPU_ARCHS
: GPU (SM) architectures to target. By default we generate CUDA code for all major SMs. Specific SM versions can be specified here as a quoted space-separated list to reduce compilation time and binary size. Table of compute capabilities of NVIDIA GPUs can be found here. Examples:-DGPU_ARCHS="80"
-DGPU_ARCHS="75"
-DGPU_ARCHS="70"
-DGPU_ARCHS="80 75"
TRT_PLATFORM_ID
: Bare-metal build (unlike containerized cross-compilation) on non Linux/x86 platforms must explicitly specify the target platform. Currently supported options: x86_64
(default), aarch64
The TensorRT python API bindings must be installed for running TensorRT python applications
Example: install TensorRT wheel for python 3.6 ```bash pip3 install $TRT_RELEASE/python/tensorrt-7.2.1.6-cp36-none-linux_x86_64.whl ```