TensorRT  7.2.1.6
NVIDIA TensorRT
Looking for a C++ dev who knows TensorRT?
I'm looking for work. Hire me!
All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator Friends Pages
MaskRCNNConfig Namespace Reference

Variables

static const nvinfer1::Dims3 IMAGE_SHAPE {3, 1024, 1024}
 
static const int POOL_SIZE = 7
 
static const int MASK_POOL_SIZE = 14
 
static const float MASK_THRESHOLD = 0.5f
 
static const float RPN_BBOX_STD_DEV [] = {0.1f, 0.1f, 0.2f, 0.2f}
 
static const float BBOX_STD_DEV [] = {0.1f, 0.1f, 0.2f, 0.2f}
 
static const int DETECTION_MAX_INSTANCES = 100
 
static const float DETECTION_MIN_CONFIDENCE = 0.7f
 
static const float DETECTION_NMS_THRESHOLD = 0.3f
 
static const std::vector< float > BACKBONE_STRIDES = {4, 8, 16, 32, 64}
 
static const int FPN_CLASSIF_FC_LAYERS_SIZE = 1024
 
static const int TOP_DOWN_PYRAMID_SIZE = 256
 
static const int NUM_CLASSES = 1 + 80
 
static const std::vector< float > RPN_ANCHOR_SCALES = {32, 64, 128, 256, 512}
 
static const float RPN_ANCHOR_RATIOS [] = {0.5f, 1, 2}
 
static const int RPN_ANCHOR_STRIDE = 1
 
static const int MAX_PRE_NMS_RESULTS = 1024
 
static const float RPN_NMS_THRESHOLD = 0.7f
 
static const int POST_NMS_ROIS_INFERENCE = 1000
 
static const std::vector< std::string > CLASS_NAMES
 
static const std::string MODEL_NAME = "mrcnn_nchw.uff"
 
static const std::string MODEL_INPUT = "input_image"
 
static const Dims3 MODEL_INPUT_SHAPE = IMAGE_SHAPE
 
static const std::vector< std::string > MODEL_OUTPUTS = {"mrcnn_detection", "mrcnn_mask/Sigmoid"}
 
static const Dims2 MODEL_DETECTION_SHAPE {DETECTION_MAX_INSTANCES, 6}
 
static const Dims4 MODEL_MASK_SHAPE {DETECTION_MAX_INSTANCES, NUM_CLASSES, 28, 28}
 
static const nvinfer1::Dims3 IMAGE_SHAPE {3, 1024, 1024}
 
static const int POOL_SIZE = 7
 
static const int MASK_POOL_SIZE = 14
 
static const float MASK_THRESHOLD = 0.5
 
static const float RPN_BBOX_STD_DEV [] = {0.1, 0.1, 0.2, 0.2}
 
static const float BBOX_STD_DEV [] = {0.1, 0.1, 0.2, 0.2}
 
static const int DETECTION_MAX_INSTANCES = 100
 
static const float DETECTION_MIN_CONFIDENCE = 0.7
 
static const float DETECTION_NMS_THRESHOLD = 0.3
 
static const std::vector< float > BACKBONE_STRIDES = {4, 8, 16, 32, 64}
 
static const int FPN_CLASSIF_FC_LAYERS_SIZE = 1024
 
static const int TOP_DOWN_PYRAMID_SIZE = 256
 
static const int NUM_CLASSES = 1 + 80
 
static const std::vector< float > RPN_ANCHOR_SCALES = {32, 64, 128, 256, 512}
 
static const float RPN_ANCHOR_RATIOS [] = {0.5, 1, 2}
 
static const int RPN_ANCHOR_STRIDE = 1
 
static const int MAX_PRE_NMS_RESULTS = 1024
 
static const float RPN_NMS_THRESHOLD = 0.7
 
static const int POST_NMS_ROIS_INFERENCE = 1000
 
static const std::vector< std::string > CLASS_NAMES
 
static const std::string MODEL_NAME = "mrcnn_nchw.uff"
 
static const std::string MODEL_INPUT = "input_image"
 
static const Dims3 MODEL_INPUT_SHAPE = IMAGE_SHAPE
 
static const std::vector< std::string > MODEL_OUTPUTS = {"mrcnn_detection", "mrcnn_mask/Sigmoid"}
 
static const Dims2 MODEL_DETECTION_SHAPE {DETECTION_MAX_INSTANCES, 6}
 
static const Dims4 MODEL_MASK_SHAPE {DETECTION_MAX_INSTANCES, NUM_CLASSES, 28, 28}
 

Variable Documentation

◆ IMAGE_SHAPE [1/2]

const nvinfer1::Dims3 MaskRCNNConfig::IMAGE_SHAPE {3, 1024, 1024}
static

◆ POOL_SIZE [1/2]

const int MaskRCNNConfig::POOL_SIZE = 7
static

◆ MASK_POOL_SIZE [1/2]

const int MaskRCNNConfig::MASK_POOL_SIZE = 14
static

◆ MASK_THRESHOLD [1/2]

const float MaskRCNNConfig::MASK_THRESHOLD = 0.5f
static

◆ RPN_BBOX_STD_DEV [1/2]

const float MaskRCNNConfig::RPN_BBOX_STD_DEV[] = {0.1f, 0.1f, 0.2f, 0.2f}
static

◆ BBOX_STD_DEV [1/2]

const float MaskRCNNConfig::BBOX_STD_DEV[] = {0.1f, 0.1f, 0.2f, 0.2f}
static

◆ DETECTION_MAX_INSTANCES [1/2]

const int MaskRCNNConfig::DETECTION_MAX_INSTANCES = 100
static

◆ DETECTION_MIN_CONFIDENCE [1/2]

const float MaskRCNNConfig::DETECTION_MIN_CONFIDENCE = 0.7f
static

◆ DETECTION_NMS_THRESHOLD [1/2]

const float MaskRCNNConfig::DETECTION_NMS_THRESHOLD = 0.3f
static

◆ BACKBONE_STRIDES [1/2]

const std::vector<float> MaskRCNNConfig::BACKBONE_STRIDES = {4, 8, 16, 32, 64}
static

◆ FPN_CLASSIF_FC_LAYERS_SIZE [1/2]

const int MaskRCNNConfig::FPN_CLASSIF_FC_LAYERS_SIZE = 1024
static

◆ TOP_DOWN_PYRAMID_SIZE [1/2]

const int MaskRCNNConfig::TOP_DOWN_PYRAMID_SIZE = 256
static

◆ NUM_CLASSES [1/2]

const int MaskRCNNConfig::NUM_CLASSES = 1 + 80
static

◆ RPN_ANCHOR_SCALES [1/2]

const std::vector<float> MaskRCNNConfig::RPN_ANCHOR_SCALES = {32, 64, 128, 256, 512}
static

◆ RPN_ANCHOR_RATIOS [1/2]

const float MaskRCNNConfig::RPN_ANCHOR_RATIOS[] = {0.5f, 1, 2}
static

◆ RPN_ANCHOR_STRIDE [1/2]

const int MaskRCNNConfig::RPN_ANCHOR_STRIDE = 1
static

◆ MAX_PRE_NMS_RESULTS [1/2]

const int MaskRCNNConfig::MAX_PRE_NMS_RESULTS = 1024
static

◆ RPN_NMS_THRESHOLD [1/2]

const float MaskRCNNConfig::RPN_NMS_THRESHOLD = 0.7f
static

◆ POST_NMS_ROIS_INFERENCE [1/2]

const int MaskRCNNConfig::POST_NMS_ROIS_INFERENCE = 1000
static

◆ CLASS_NAMES [1/2]

const std::vector<std::string> MaskRCNNConfig::CLASS_NAMES
static

◆ MODEL_NAME [1/2]

const std::string MaskRCNNConfig::MODEL_NAME = "mrcnn_nchw.uff"
static

◆ MODEL_INPUT [1/2]

const std::string MaskRCNNConfig::MODEL_INPUT = "input_image"
static

◆ MODEL_INPUT_SHAPE [1/2]

const Dims3 MaskRCNNConfig::MODEL_INPUT_SHAPE = IMAGE_SHAPE
static

◆ MODEL_OUTPUTS [1/2]

const std::vector<std::string> MaskRCNNConfig::MODEL_OUTPUTS = {"mrcnn_detection", "mrcnn_mask/Sigmoid"}
static

◆ MODEL_DETECTION_SHAPE [1/2]

const Dims2 MaskRCNNConfig::MODEL_DETECTION_SHAPE {DETECTION_MAX_INSTANCES, 6}
static

◆ MODEL_MASK_SHAPE [1/2]

const Dims4 MaskRCNNConfig::MODEL_MASK_SHAPE {DETECTION_MAX_INSTANCES, NUM_CLASSES, 28, 28}
static

◆ IMAGE_SHAPE [2/2]

const nvinfer1::Dims3 MaskRCNNConfig::IMAGE_SHAPE {3, 1024, 1024}
static

◆ POOL_SIZE [2/2]

const int MaskRCNNConfig::POOL_SIZE = 7
static

◆ MASK_POOL_SIZE [2/2]

const int MaskRCNNConfig::MASK_POOL_SIZE = 14
static

◆ MASK_THRESHOLD [2/2]

const float MaskRCNNConfig::MASK_THRESHOLD = 0.5
static

◆ RPN_BBOX_STD_DEV [2/2]

const float MaskRCNNConfig::RPN_BBOX_STD_DEV[] = {0.1, 0.1, 0.2, 0.2}
static

◆ BBOX_STD_DEV [2/2]

const float MaskRCNNConfig::BBOX_STD_DEV[] = {0.1, 0.1, 0.2, 0.2}
static

◆ DETECTION_MAX_INSTANCES [2/2]

const int MaskRCNNConfig::DETECTION_MAX_INSTANCES = 100
static

◆ DETECTION_MIN_CONFIDENCE [2/2]

const float MaskRCNNConfig::DETECTION_MIN_CONFIDENCE = 0.7
static

◆ DETECTION_NMS_THRESHOLD [2/2]

const float MaskRCNNConfig::DETECTION_NMS_THRESHOLD = 0.3
static

◆ BACKBONE_STRIDES [2/2]

const std::vector<float> MaskRCNNConfig::BACKBONE_STRIDES = {4, 8, 16, 32, 64}
static

◆ FPN_CLASSIF_FC_LAYERS_SIZE [2/2]

const int MaskRCNNConfig::FPN_CLASSIF_FC_LAYERS_SIZE = 1024
static

◆ TOP_DOWN_PYRAMID_SIZE [2/2]

const int MaskRCNNConfig::TOP_DOWN_PYRAMID_SIZE = 256
static

◆ NUM_CLASSES [2/2]

const int MaskRCNNConfig::NUM_CLASSES = 1 + 80
static

◆ RPN_ANCHOR_SCALES [2/2]

const std::vector<float> MaskRCNNConfig::RPN_ANCHOR_SCALES = {32, 64, 128, 256, 512}
static

◆ RPN_ANCHOR_RATIOS [2/2]

const float MaskRCNNConfig::RPN_ANCHOR_RATIOS[] = {0.5, 1, 2}
static

◆ RPN_ANCHOR_STRIDE [2/2]

const int MaskRCNNConfig::RPN_ANCHOR_STRIDE = 1
static

◆ MAX_PRE_NMS_RESULTS [2/2]

const int MaskRCNNConfig::MAX_PRE_NMS_RESULTS = 1024
static

◆ RPN_NMS_THRESHOLD [2/2]

const float MaskRCNNConfig::RPN_NMS_THRESHOLD = 0.7
static

◆ POST_NMS_ROIS_INFERENCE [2/2]

const int MaskRCNNConfig::POST_NMS_ROIS_INFERENCE = 1000
static

◆ CLASS_NAMES [2/2]

const std::vector<std::string> MaskRCNNConfig::CLASS_NAMES
static

◆ MODEL_NAME [2/2]

const std::string MaskRCNNConfig::MODEL_NAME = "mrcnn_nchw.uff"
static

◆ MODEL_INPUT [2/2]

const std::string MaskRCNNConfig::MODEL_INPUT = "input_image"
static

◆ MODEL_INPUT_SHAPE [2/2]

const Dims3 MaskRCNNConfig::MODEL_INPUT_SHAPE = IMAGE_SHAPE
static

◆ MODEL_OUTPUTS [2/2]

const std::vector<std::string> MaskRCNNConfig::MODEL_OUTPUTS = {"mrcnn_detection", "mrcnn_mask/Sigmoid"}
static

◆ MODEL_DETECTION_SHAPE [2/2]

const Dims2 MaskRCNNConfig::MODEL_DETECTION_SHAPE {DETECTION_MAX_INSTANCES, 6}
static

◆ MODEL_MASK_SHAPE [2/2]

const Dims4 MaskRCNNConfig::MODEL_MASK_SHAPE {DETECTION_MAX_INSTANCES, NUM_CLASSES, 28, 28}
static