|
static const nvinfer1::Dims3 | IMAGE_SHAPE {3, 1024, 1024} |
|
static const int | POOL_SIZE = 7 |
|
static const int | MASK_POOL_SIZE = 14 |
|
static const float | MASK_THRESHOLD = 0.5f |
|
static const float | RPN_BBOX_STD_DEV [] = {0.1f, 0.1f, 0.2f, 0.2f} |
|
static const float | BBOX_STD_DEV [] = {0.1f, 0.1f, 0.2f, 0.2f} |
|
static const int | DETECTION_MAX_INSTANCES = 100 |
|
static const float | DETECTION_MIN_CONFIDENCE = 0.7f |
|
static const float | DETECTION_NMS_THRESHOLD = 0.3f |
|
static const std::vector< float > | BACKBONE_STRIDES = {4, 8, 16, 32, 64} |
|
static const int | FPN_CLASSIF_FC_LAYERS_SIZE = 1024 |
|
static const int | TOP_DOWN_PYRAMID_SIZE = 256 |
|
static const int | NUM_CLASSES = 1 + 80 |
|
static const std::vector< float > | RPN_ANCHOR_SCALES = {32, 64, 128, 256, 512} |
|
static const float | RPN_ANCHOR_RATIOS [] = {0.5f, 1, 2} |
|
static const int | RPN_ANCHOR_STRIDE = 1 |
|
static const int | MAX_PRE_NMS_RESULTS = 1024 |
|
static const float | RPN_NMS_THRESHOLD = 0.7f |
|
static const int | POST_NMS_ROIS_INFERENCE = 1000 |
|
static const std::vector< std::string > | CLASS_NAMES |
|
static const std::string | MODEL_NAME = "mrcnn_nchw.uff" |
|
static const std::string | MODEL_INPUT = "input_image" |
|
static const Dims3 | MODEL_INPUT_SHAPE = IMAGE_SHAPE |
|
static const std::vector< std::string > | MODEL_OUTPUTS = {"mrcnn_detection", "mrcnn_mask/Sigmoid"} |
|
static const Dims2 | MODEL_DETECTION_SHAPE {DETECTION_MAX_INSTANCES, 6} |
|
static const Dims4 | MODEL_MASK_SHAPE {DETECTION_MAX_INSTANCES, NUM_CLASSES, 28, 28} |
|
static const nvinfer1::Dims3 | IMAGE_SHAPE {3, 1024, 1024} |
|
static const int | POOL_SIZE = 7 |
|
static const int | MASK_POOL_SIZE = 14 |
|
static const float | MASK_THRESHOLD = 0.5 |
|
static const float | RPN_BBOX_STD_DEV [] = {0.1, 0.1, 0.2, 0.2} |
|
static const float | BBOX_STD_DEV [] = {0.1, 0.1, 0.2, 0.2} |
|
static const int | DETECTION_MAX_INSTANCES = 100 |
|
static const float | DETECTION_MIN_CONFIDENCE = 0.7 |
|
static const float | DETECTION_NMS_THRESHOLD = 0.3 |
|
static const std::vector< float > | BACKBONE_STRIDES = {4, 8, 16, 32, 64} |
|
static const int | FPN_CLASSIF_FC_LAYERS_SIZE = 1024 |
|
static const int | TOP_DOWN_PYRAMID_SIZE = 256 |
|
static const int | NUM_CLASSES = 1 + 80 |
|
static const std::vector< float > | RPN_ANCHOR_SCALES = {32, 64, 128, 256, 512} |
|
static const float | RPN_ANCHOR_RATIOS [] = {0.5, 1, 2} |
|
static const int | RPN_ANCHOR_STRIDE = 1 |
|
static const int | MAX_PRE_NMS_RESULTS = 1024 |
|
static const float | RPN_NMS_THRESHOLD = 0.7 |
|
static const int | POST_NMS_ROIS_INFERENCE = 1000 |
|
static const std::vector< std::string > | CLASS_NAMES |
|
static const std::string | MODEL_NAME = "mrcnn_nchw.uff" |
|
static const std::string | MODEL_INPUT = "input_image" |
|
static const Dims3 | MODEL_INPUT_SHAPE = IMAGE_SHAPE |
|
static const std::vector< std::string > | MODEL_OUTPUTS = {"mrcnn_detection", "mrcnn_mask/Sigmoid"} |
|
static const Dims2 | MODEL_DETECTION_SHAPE {DETECTION_MAX_INSTANCES, 6} |
|
static const Dims4 | MODEL_MASK_SHAPE {DETECTION_MAX_INSTANCES, NUM_CLASSES, 28, 28} |
|