TensorRT  7.2.1.6
NVIDIA TensorRT
Looking for a C++ dev who knows TensorRT?
I'm looking for work. Hire me!
All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator Friends Pages
audio_processing Namespace Reference

Functions

def window_sumsquare (window, n_frames, hop_length=200, win_length=800, n_fft=800, dtype=np.float32, norm=None)
 
def griffin_lim (magnitudes, stft_fn, n_iters=30)
 
def dynamic_range_compression (x, C=1, clip_val=1e-5)
 
def dynamic_range_decompression (x, C=1)
 

Function Documentation

◆ window_sumsquare()

def audio_processing.window_sumsquare (   window,
  n_frames,
  hop_length = 200,
  win_length = 800,
  n_fft = 800,
  dtype = np.float32,
  norm = None 
)
# from librosa 0.6
Compute the sum-square envelope of a window function at a given hop length.

This is used to estimate modulation effects induced by windowing
observations in short-time fourier transforms.

Parameters
----------
window : string, tuple, number, callable, or list-like
    Window specification, as in `get_window`

n_frames : int > 0
    The number of analysis frames

hop_length : int > 0
    The number of samples to advance between frames

win_length : [optional]
    The length of the window function.  By default, this matches `n_fft`.

n_fft : int > 0
    The length of each analysis frame.

dtype : np.dtype
    The data type of the output

Returns
-------
wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))`
    The sum-squared envelope of the window function

◆ griffin_lim()

def audio_processing.griffin_lim (   magnitudes,
  stft_fn,
  n_iters = 30 
)
PARAMS
------
magnitudes: spectrogram magnitudes
stft_fn: STFT class with transform (STFT) and inverse (ISTFT) methods

◆ dynamic_range_compression()

def audio_processing.dynamic_range_compression (   x,
  C = 1,
  clip_val = 1e-5 
)
PARAMS
------
C: compression factor

◆ dynamic_range_decompression()

def audio_processing.dynamic_range_decompression (   x,
  C = 1 
)
PARAMS
------
C: compression factor used to compress