Functions | |
def | preprocess (dynamic_graph) |
Variables | |
CropAndResize = gs.create_plugin_node(name='roi_pooling_conv_1/CropAndResize_new', op="CropAndResize", inputs=['activation_7/Relu', 'proposal'], crop_height=7, crop_width=7) | |
Proposal = gs.create_plugin_node(name='proposal', op='Proposal', inputs=['rpn_out_class/Sigmoid', 'rpn_out_regress/BiasAdd'], input_height=272, input_width=480, rpn_stride=16, roi_min_size=1.0, nms_iou_threshold=0.7, pre_nms_top_n=6000, post_nms_top_n=300, anchor_sizes=[32.0, 64.0, 128.0], anchor_ratios=[1.0, 0.5, 2.0]) | |
dictionary | namespace_plugin_map |
fpn_p5upsampled = gs.create_plugin_node("fpn_p5upsampled", op="ResizeNearest_TRT", dtype=tf.float32, scale=2.0) | |
fpn_p4upsampled = gs.create_plugin_node("fpn_p4upsampled", op="ResizeNearest_TRT", dtype=tf.float32, scale=2.0) | |
fpn_p3upsampled = gs.create_plugin_node("fpn_p3upsampled", op="ResizeNearest_TRT", dtype=tf.float32, scale=2.0) | |
roi = gs.create_plugin_node("ROI", op="ProposalLayer_TRT", prenms_topk=1024, keep_topk=1000, iou_threshold=0.7, image_size=[3, 1024, 1024]) | |
roi_align_classifier = gs.create_plugin_node("roi_align_classifier", op="PyramidROIAlign_TRT", pooled_size=7) | |
mrcnn_detection = gs.create_plugin_node("mrcnn_detection", op="DetectionLayer_TRT", num_classes=81, keep_topk=100, score_threshold=0.7, iou_threshold=0.3) | |
roi_align_mask = gs.create_plugin_node("roi_align_mask_trt", op="PyramidROIAlign_TRT", pooled_size=14) | |
mrcnn_detection_bboxes = gs.create_plugin_node("mrcnn_detection_bboxes", op="SpecialSlice_TRT") | |
list | timedistributed_remove_list |
list | timedistributed_connect_pairs |
Input | |
PriorBox | |
NMS | |
concat_priorbox = gs.create_node(name="concat_priorbox", op="ConcatV2", dtype=tf.float32, axis=2) | |
concat_box_loc = gs.create_plugin_node("concat_box_loc", op="FlattenConcat_TRT", dtype=tf.float32, axis=1, ignoreBatch=0) | |
concat_box_conf = gs.create_plugin_node("concat_box_conf", op="FlattenConcat_TRT", dtype=tf.float32, axis=1, ignoreBatch=0) | |
def config.preprocess | ( | dynamic_graph | ) |
config.CropAndResize = gs.create_plugin_node(name='roi_pooling_conv_1/CropAndResize_new', op="CropAndResize", inputs=['activation_7/Relu', 'proposal'], crop_height=7, crop_width=7) |
config.Proposal = gs.create_plugin_node(name='proposal', op='Proposal', inputs=['rpn_out_class/Sigmoid', 'rpn_out_regress/BiasAdd'], input_height=272, input_width=480, rpn_stride=16, roi_min_size=1.0, nms_iou_threshold=0.7, pre_nms_top_n=6000, post_nms_top_n=300, anchor_sizes=[32.0, 64.0, 128.0], anchor_ratios=[1.0, 0.5, 2.0]) |
dictionary config.namespace_plugin_map |
config.fpn_p5upsampled = gs.create_plugin_node("fpn_p5upsampled", op="ResizeNearest_TRT", dtype=tf.float32, scale=2.0) |
config.fpn_p4upsampled = gs.create_plugin_node("fpn_p4upsampled", op="ResizeNearest_TRT", dtype=tf.float32, scale=2.0) |
config.fpn_p3upsampled = gs.create_plugin_node("fpn_p3upsampled", op="ResizeNearest_TRT", dtype=tf.float32, scale=2.0) |
config.roi = gs.create_plugin_node("ROI", op="ProposalLayer_TRT", prenms_topk=1024, keep_topk=1000, iou_threshold=0.7, image_size=[3, 1024, 1024]) |
config.roi_align_classifier = gs.create_plugin_node("roi_align_classifier", op="PyramidROIAlign_TRT", pooled_size=7) |
config.mrcnn_detection = gs.create_plugin_node("mrcnn_detection", op="DetectionLayer_TRT", num_classes=81, keep_topk=100, score_threshold=0.7, iou_threshold=0.3) |
config.roi_align_mask = gs.create_plugin_node("roi_align_mask_trt", op="PyramidROIAlign_TRT", pooled_size=14) |
config.mrcnn_detection_bboxes = gs.create_plugin_node("mrcnn_detection_bboxes", op="SpecialSlice_TRT") |
list config.timedistributed_remove_list |
list config.timedistributed_connect_pairs |
config.Input |
config.PriorBox |
config.NMS |
config.concat_priorbox = gs.create_node(name="concat_priorbox", op="ConcatV2", dtype=tf.float32, axis=2) |
config.concat_box_loc = gs.create_plugin_node("concat_box_loc", op="FlattenConcat_TRT", dtype=tf.float32, axis=1, ignoreBatch=0) |
config.concat_box_conf = gs.create_plugin_node("concat_box_conf", op="FlattenConcat_TRT", dtype=tf.float32, axis=1, ignoreBatch=0) |