TensorRT  7.2.1.6
NVIDIA TensorRT
Looking for a C++ dev who knows TensorRT?
I'm looking for work. Hire me!
All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator Friends Pages
helpers.data_processing Namespace Reference

Functions

def convert_doc_tokens (paragraph_text)
 
def _check_is_max_context (doc_spans, cur_span_index, position)
 
def convert_example_to_features (doc_tokens, question_text, tokenizer, max_seq_length, doc_stride, max_query_length)
 
def read_squad_json (input_file)
 
def _get_best_indexes (logits, n_best_size)
 
def get_final_text (pred_text, orig_text, do_lower_case)
 
def _compute_softmax (scores)
 
def get_predictions (doc_tokens, features, results, n_best_size, max_answer_length)
 

Function Documentation

◆ convert_doc_tokens()

def helpers.data_processing.convert_doc_tokens (   paragraph_text)
Return the list of tokens from the doc text 
Here is the caller graph for this function:

◆ _check_is_max_context()

def helpers.data_processing._check_is_max_context (   doc_spans,
  cur_span_index,
  position 
)
private
Check if this is the 'max context' doc span for the token.
Here is the caller graph for this function:

◆ convert_example_to_features()

def helpers.data_processing.convert_example_to_features (   doc_tokens,
  question_text,
  tokenizer,
  max_seq_length,
  doc_stride,
  max_query_length 
)
Loads a data file into a list of `InputBatch`s.
Here is the call graph for this function:

◆ read_squad_json()

def helpers.data_processing.read_squad_json (   input_file)
read from squad json into a list of examples
Here is the call graph for this function:

◆ _get_best_indexes()

def helpers.data_processing._get_best_indexes (   logits,
  n_best_size 
)
private
Get the n-best logits from a list.
Here is the caller graph for this function:

◆ get_final_text()

def helpers.data_processing.get_final_text (   pred_text,
  orig_text,
  do_lower_case 
)
Project the tokenized prediction back to the original text.
Here is the caller graph for this function:

◆ _compute_softmax()

def helpers.data_processing._compute_softmax (   scores)
private
Compute softmax probability over raw logits.
Here is the caller graph for this function:

◆ get_predictions()

def helpers.data_processing.get_predictions (   doc_tokens,
  features,
  results,
  n_best_size,
  max_answer_length 
)
Here is the call graph for this function: