Functions | |
def | parse_args () |
def | question_features (tokens, question) |
def | inference (features, tokens) |
def | print_single_query (eval_time_elapsed, prediction, nbest_json) |
Variables | |
TRT_LOGGER = trt.Logger(trt.Logger.INFO) | |
def | args = parse_args() |
paragraph_text = None | |
squad_examples = None | |
output_prediction_file = None | |
f = open(args.passage_file, 'r') | |
question_text = None | |
tokenizer = tokenization.FullTokenizer(vocab_file=args.vocab_file, do_lower_case=True) | |
int | doc_stride = 128 |
def | max_seq_length = args.sequence_length |
handle = ctypes.CDLL("libnvinfer_plugin.so", mode=ctypes.RTLD_GLOBAL) | |
active_optimization_profile | |
def | input_nbytes = max_seq_length * trt.int32.itemsize |
stream = cuda.Stream() | |
list | d_inputs = [cuda.mem_alloc(input_nbytes) for binding in range(4)] |
h_output = cuda.pagelocked_empty((2 * max_seq_length), dtype=np.float32) | |
d_output = cuda.mem_alloc(h_output.nbytes) | |
all_predictions = collections.OrderedDict() | |
def | features = question_features(example.doc_tokens, example.question_text) |
eval_time_elapsed | |
prediction | |
nbest_json | |
doc_tokens = dp.convert_doc_tokens(paragraph_text) | |
list | EXIT_CMDS = ["exit", "quit"] |
def inference_varseqlen.parse_args | ( | ) |
Parse command line arguments
def inference_varseqlen.question_features | ( | tokens, | |
question | |||
) |
def inference_varseqlen.inference | ( | features, | |
tokens | |||
) |
def inference_varseqlen.print_single_query | ( | eval_time_elapsed, | |
prediction, | |||
nbest_json | |||
) |
inference_varseqlen.TRT_LOGGER = trt.Logger(trt.Logger.INFO) |
def inference_varseqlen.args = parse_args() |
string inference_varseqlen.paragraph_text = None |
inference_varseqlen.squad_examples = None |
def inference_varseqlen.output_prediction_file = None |
inference_varseqlen.f = open(args.passage_file, 'r') |
string inference_varseqlen.question_text = None |
inference_varseqlen.tokenizer = tokenization.FullTokenizer(vocab_file=args.vocab_file, do_lower_case=True) |
int inference_varseqlen.doc_stride = 128 |
def inference_varseqlen.max_seq_length = args.sequence_length |
inference_varseqlen.handle = ctypes.CDLL("libnvinfer_plugin.so", mode=ctypes.RTLD_GLOBAL) |
inference_varseqlen.active_optimization_profile |
def inference_varseqlen.input_nbytes = max_seq_length * trt.int32.itemsize |
inference_varseqlen.stream = cuda.Stream() |
list inference_varseqlen.d_inputs = [cuda.mem_alloc(input_nbytes) for binding in range(4)] |
inference_varseqlen.h_output = cuda.pagelocked_empty((2 * max_seq_length), dtype=np.float32) |
inference_varseqlen.d_output = cuda.mem_alloc(h_output.nbytes) |
inference_varseqlen.all_predictions = collections.OrderedDict() |
def inference_varseqlen.features = question_features(example.doc_tokens, example.question_text) |
inference_varseqlen.eval_time_elapsed |
inference_varseqlen.prediction |
inference_varseqlen.nbest_json |
inference_varseqlen.doc_tokens = dp.convert_doc_tokens(paragraph_text) |
list inference_varseqlen.EXIT_CMDS = ["exit", "quit"] |