TensorRT  7.2.1.6
NVIDIA TensorRT
Looking for a C++ dev who knows TensorRT?
I'm looking for work. Hire me!
All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator Friends Pages
inference_varseqlen Namespace Reference

Functions

def parse_args ()
 
def question_features (tokens, question)
 
def inference (features, tokens)
 
def print_single_query (eval_time_elapsed, prediction, nbest_json)
 

Variables

 TRT_LOGGER = trt.Logger(trt.Logger.INFO)
 
def args = parse_args()
 
 paragraph_text = None
 
 squad_examples = None
 
 output_prediction_file = None
 
 f = open(args.passage_file, 'r')
 
 question_text = None
 
 tokenizer = tokenization.FullTokenizer(vocab_file=args.vocab_file, do_lower_case=True)
 
int doc_stride = 128
 
def max_seq_length = args.sequence_length
 
 handle = ctypes.CDLL("libnvinfer_plugin.so", mode=ctypes.RTLD_GLOBAL)
 
 active_optimization_profile
 
def input_nbytes = max_seq_length * trt.int32.itemsize
 
 stream = cuda.Stream()
 
list d_inputs = [cuda.mem_alloc(input_nbytes) for binding in range(4)]
 
 h_output = cuda.pagelocked_empty((2 * max_seq_length), dtype=np.float32)
 
 d_output = cuda.mem_alloc(h_output.nbytes)
 
 all_predictions = collections.OrderedDict()
 
def features = question_features(example.doc_tokens, example.question_text)
 
 eval_time_elapsed
 
 prediction
 
 nbest_json
 
 doc_tokens = dp.convert_doc_tokens(paragraph_text)
 
list EXIT_CMDS = ["exit", "quit"]
 

Function Documentation

◆ parse_args()

def inference_varseqlen.parse_args ( )
Parse command line arguments

◆ question_features()

def inference_varseqlen.question_features (   tokens,
  question 
)

◆ inference()

def inference_varseqlen.inference (   features,
  tokens 
)

◆ print_single_query()

def inference_varseqlen.print_single_query (   eval_time_elapsed,
  prediction,
  nbest_json 
)

Variable Documentation

◆ TRT_LOGGER

inference_varseqlen.TRT_LOGGER = trt.Logger(trt.Logger.INFO)

◆ args

def inference_varseqlen.args = parse_args()

◆ paragraph_text

string inference_varseqlen.paragraph_text = None

◆ squad_examples

inference_varseqlen.squad_examples = None

◆ output_prediction_file

def inference_varseqlen.output_prediction_file = None

◆ f

inference_varseqlen.f = open(args.passage_file, 'r')

◆ question_text

string inference_varseqlen.question_text = None

◆ tokenizer

inference_varseqlen.tokenizer = tokenization.FullTokenizer(vocab_file=args.vocab_file, do_lower_case=True)

◆ doc_stride

int inference_varseqlen.doc_stride = 128

◆ max_seq_length

def inference_varseqlen.max_seq_length = args.sequence_length

◆ handle

inference_varseqlen.handle = ctypes.CDLL("libnvinfer_plugin.so", mode=ctypes.RTLD_GLOBAL)

◆ active_optimization_profile

inference_varseqlen.active_optimization_profile

◆ input_nbytes

def inference_varseqlen.input_nbytes = max_seq_length * trt.int32.itemsize

◆ stream

inference_varseqlen.stream = cuda.Stream()

◆ d_inputs

list inference_varseqlen.d_inputs = [cuda.mem_alloc(input_nbytes) for binding in range(4)]

◆ h_output

inference_varseqlen.h_output = cuda.pagelocked_empty((2 * max_seq_length), dtype=np.float32)

◆ d_output

inference_varseqlen.d_output = cuda.mem_alloc(h_output.nbytes)

◆ all_predictions

inference_varseqlen.all_predictions = collections.OrderedDict()

◆ features

def inference_varseqlen.features = question_features(example.doc_tokens, example.question_text)

◆ eval_time_elapsed

inference_varseqlen.eval_time_elapsed

◆ prediction

inference_varseqlen.prediction

◆ nbest_json

inference_varseqlen.nbest_json

◆ doc_tokens

inference_varseqlen.doc_tokens = dp.convert_doc_tokens(paragraph_text)

◆ EXIT_CMDS

list inference_varseqlen.EXIT_CMDS = ["exit", "quit"]