TensorRT  7.2.1.6
NVIDIA TensorRT
Looking for a C++ dev who knows TensorRT?
I'm looking for work. Hire me!
pytorch_quantization.optim.helper Namespace Reference

Functions

def match_parameters (model, patterns)
 
def group_parameters (model, patterns_list, lrs=None, momentums=None, weight_decays=None)
 
def freeze_parameters (model, patterns)
 
def quant_weight_inplace (model)
 

Function Documentation

◆ match_parameters()

def pytorch_quantization.optim.helper.match_parameters (   model,
  patterns 
)
Returns an generator over module parameters if name matches key

It is useful to group parameters, and apply different functions to different group. This function provides an easy
way to group them.

Args:
    model: A Module
    patterns: A list of strings that will be used to match parameter names. If parameter name contains any pattern,
        it will be yield

Yields:
    param: Module parameters
Here is the caller graph for this function:

◆ group_parameters()

def pytorch_quantization.optim.helper.group_parameters (   model,
  patterns_list,
  lrs = None,
  momentums = None,
  weight_decays = None 
)
Group parameters for using per-parameters option in optimizer

Returns a list of dict that matches Pytorch optimizer fashion, see
https://pytorch.org/docs/stable/optim.html#per-parameter-options for more details.

Example:
    >>> [
    >>>    {'params': model.base.parameters()},
    >>>    {'params': model.classifier.parameters(), 'lr': 1e-3}
    >>> ]
Parameters will be grouped w.r.t first level of the keys_list. e.g. `keys_list=[['conv1', 'conv2'], ['conv3']]` will
return 2 groups, one with `conv1` and `conv2` in name, and the other with `conv3` in name.

If lr, momentum or weight_decay are supplied, they will be added to the group as well.


Args:
    model: A module
    patterns_list: A list of list of strings. WARNING: patters must be EXCLUSIVE, the function doesn't
        perform exclusive check.
    lrs: A list of float with same length as keys_list or None.
    momentums: A list of float with same length as keys_list or None.
    weight_decays: A list of float with same length as keys_list or None.

Returns:
    param_group: A list of dict
Here is the call graph for this function:

◆ freeze_parameters()

def pytorch_quantization.optim.helper.freeze_parameters (   model,
  patterns 
)
Set requires_grad to False if patterns match name

Args:
    model: A Module
    patterns: A list of strings that will be used to match parameter names. If parameter name contains any pattern,
        it will be frozen.

◆ quant_weight_inplace()

def pytorch_quantization.optim.helper.quant_weight_inplace (   model)
Make quantization inplace

Search for quantized modules including QuantConvNd and QuantLinear, make weight quantization in place using
weight_quantizer.

Most publications of quantization aware training uses STE by default, which is really an approximation of
derivative of the nondifferentiable quantization function, which works to some extended but by no means the F=ma of
the problem.
Inplace quantization can be used to implement relax-and-round, which is a common method in Discrete Optimization's
or Integer Programming, see more explanation in
p4hw://hw/doc/gpu/compute/DL/reduced_precision_study/fine.tune.4.int8/Train.for.Quantization.md