OpenCV  4.1.1-pre
Open Source Computer Vision
Looking for a C++ dev who knows OpenCV?
I'm looking for work. Hire me!
cv::dnn::DetectionOutputLayer Class Reference

#include <opencv2/dnn/all_layers.hpp>

Inheritance diagram for cv::dnn::DetectionOutputLayer:
Collaboration diagram for cv::dnn::DetectionOutputLayer:

Public Member Functions

virtual void applyHalideScheduler (Ptr< BackendNode > &node, const std::vector< Mat *> &inputs, const std::vector< Mat > &outputs, int targetId) const
 Automatic Halide scheduling based on layer hyper-parameters. More...
 
virtual void clear ()
 Clears the algorithm state. More...
 
virtual bool empty () const
 Returns true if the Algorithm is empty (e.g. More...
 
virtual void finalize (const std::vector< Mat *> &input, std::vector< Mat > &output)
 Computes and sets internal parameters according to inputs, outputs and blobs. More...
 
virtual void finalize (InputArrayOfArrays inputs, OutputArrayOfArrays outputs)
 Computes and sets internal parameters according to inputs, outputs and blobs. More...
 
void finalize (const std::vector< Mat > &inputs, std::vector< Mat > &outputs)
 This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts. More...
 
std::vector< Matfinalize (const std::vector< Mat > &inputs)
 This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts. More...
 
virtual void forward (std::vector< Mat *> &input, std::vector< Mat > &output, std::vector< Mat > &internals)
 Given the input blobs, computes the output blobs. More...
 
virtual void forward (InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals)
 Given the input blobs, computes the output blobs. More...
 
void forward_fallback (InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals)
 Given the input blobs, computes the output blobs. More...
 
virtual String getDefaultName () const
 Returns the algorithm string identifier. More...
 
virtual int64 getFLOPS (const std::vector< MatShape > &inputs, const std::vector< MatShape > &outputs) const
 
virtual bool getMemoryShapes (const std::vector< MatShape > &inputs, const int requiredOutputs, std::vector< MatShape > &outputs, std::vector< MatShape > &internals) const
 
virtual void getScaleShift (Mat &scale, Mat &shift) const
 Returns parameters of layers with channel-wise multiplication and addition. More...
 
virtual Ptr< BackendNodeinitHalide (const std::vector< Ptr< BackendWrapper > > &inputs)
 Returns Halide backend node. More...
 
virtual Ptr< BackendNodeinitInfEngine (const std::vector< Ptr< BackendWrapper > > &inputs)
 
virtual Ptr< BackendNodeinitVkCom (const std::vector< Ptr< BackendWrapper > > &inputs)
 
virtual int inputNameToIndex (String inputName)
 Returns index of input blob into the input array. More...
 
virtual int outputNameToIndex (const String &outputName)
 Returns index of output blob in output array. More...
 
virtual void read (const FileNode &fn)
 Reads algorithm parameters from a file storage. More...
 
void run (const std::vector< Mat > &inputs, std::vector< Mat > &outputs, std::vector< Mat > &internals)
 Allocates layer and computes output. More...
 
virtual void save (const String &filename) const
 Saves the algorithm to a file. More...
 
virtual bool setActivation (const Ptr< ActivationLayer > &layer)
 Tries to attach to the layer the subsequent activation layer, i.e. More...
 
void setParamsFrom (const LayerParams &params)
 Initializes only name, type and blobs fields. More...
 
virtual bool supportBackend (int backendId)
 Ask layer if it support specific backend for doing computations. More...
 
virtual Ptr< BackendNodetryAttach (const Ptr< BackendNode > &node)
 Implement layers fusing. More...
 
virtual bool tryFuse (Ptr< Layer > &top)
 Try to fuse current layer with a next one. More...
 
virtual void unsetAttached ()
 "Deattaches" all the layers, attached to particular layer. More...
 
virtual void write (FileStorage &fs) const
 Stores algorithm parameters in a file storage. More...
 
void write (const Ptr< FileStorage > &fs, const String &name=String()) const
 simplified API for language bindings This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts. More...
 

Static Public Member Functions

static Ptr< DetectionOutputLayercreate (const LayerParams &params)
 
template<typename _Tp >
static Ptr< _Tp > load (const String &filename, const String &objname=String())
 Loads algorithm from the file. More...
 
template<typename _Tp >
static Ptr< _Tp > loadFromString (const String &strModel, const String &objname=String())
 Loads algorithm from a String. More...
 
template<typename _Tp >
static Ptr< _Tp > read (const FileNode &fn)
 Reads algorithm from the file node. More...
 

Public Attributes

std::vector< Matblobs
 List of learned parameters must be stored here to allow read them by using Net::getParam(). More...
 
String name
 Name of the layer instance, can be used for logging or other internal purposes. More...
 
int preferableTarget
 prefer target for layer forwarding More...
 
String type
 Type name which was used for creating layer by layer factory. More...
 

Protected Member Functions

void writeFormat (FileStorage &fs) const
 

Member Function Documentation

◆ applyHalideScheduler()

virtual void cv::dnn::Layer::applyHalideScheduler ( Ptr< BackendNode > &  node,
const std::vector< Mat *> &  inputs,
const std::vector< Mat > &  outputs,
int  targetId 
) const
virtualinherited

Automatic Halide scheduling based on layer hyper-parameters.

Parameters
[in]nodeBackend node with Halide functions.
[in]inputsBlobs that will be used in forward invocations.
[in]outputsBlobs that will be used in forward invocations.
[in]targetIdTarget identifier
See also
BackendNode, Target

Layer don't use own Halide::Func members because we can have applied layers fusing. In this way the fused function should be scheduled.

◆ clear()

virtual void cv::Algorithm::clear ( )
inlinevirtualinherited

Clears the algorithm state.

Reimplemented in cv::FlannBasedMatcher, and cv::DescriptorMatcher.

◆ create()

static Ptr<DetectionOutputLayer> cv::dnn::DetectionOutputLayer::create ( const LayerParams params)
static

◆ empty()

virtual bool cv::Algorithm::empty ( ) const
inlinevirtualinherited

Returns true if the Algorithm is empty (e.g.

in the very beginning or after unsuccessful read

Reimplemented in cv::DescriptorMatcher, cv::ml::StatModel, cv::Feature2D, and cv::BaseCascadeClassifier.

◆ finalize() [1/4]

virtual void cv::dnn::Layer::finalize ( const std::vector< Mat *> &  input,
std::vector< Mat > &  output 
)
virtualinherited

Computes and sets internal parameters according to inputs, outputs and blobs.

Deprecated:
Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead
Parameters
[in]inputvector of already allocated input blobs
[out]outputvector of already allocated output blobs

If this method is called after network has allocated all memory for input and output blobs and before inferencing.

◆ finalize() [2/4]

virtual void cv::dnn::Layer::finalize ( InputArrayOfArrays  inputs,
OutputArrayOfArrays  outputs 
)
virtualinherited

Computes and sets internal parameters according to inputs, outputs and blobs.

Parameters
[in]inputsvector of already allocated input blobs
[out]outputsvector of already allocated output blobs

If this method is called after network has allocated all memory for input and output blobs and before inferencing.

◆ finalize() [3/4]

void cv::dnn::Layer::finalize ( const std::vector< Mat > &  inputs,
std::vector< Mat > &  outputs 
)
inherited

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Deprecated:
Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead

◆ finalize() [4/4]

std::vector<Mat> cv::dnn::Layer::finalize ( const std::vector< Mat > &  inputs)
inherited

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Deprecated:
Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead

◆ forward() [1/2]

virtual void cv::dnn::Layer::forward ( std::vector< Mat *> &  input,
std::vector< Mat > &  output,
std::vector< Mat > &  internals 
)
virtualinherited

Given the input blobs, computes the output blobs.

Deprecated:
Use Layer::forward(InputArrayOfArrays, OutputArrayOfArrays, OutputArrayOfArrays) instead
Parameters
[in]inputthe input blobs.
[out]outputallocated output blobs, which will store results of the computation.
[out]internalsallocated internal blobs

◆ forward() [2/2]

virtual void cv::dnn::Layer::forward ( InputArrayOfArrays  inputs,
OutputArrayOfArrays  outputs,
OutputArrayOfArrays  internals 
)
virtualinherited

Given the input blobs, computes the output blobs.

Parameters
[in]inputsthe input blobs.
[out]outputsallocated output blobs, which will store results of the computation.
[out]internalsallocated internal blobs

◆ forward_fallback()

void cv::dnn::Layer::forward_fallback ( InputArrayOfArrays  inputs,
OutputArrayOfArrays  outputs,
OutputArrayOfArrays  internals 
)
inherited

Given the input blobs, computes the output blobs.

Parameters
[in]inputsthe input blobs.
[out]outputsallocated output blobs, which will store results of the computation.
[out]internalsallocated internal blobs

◆ getDefaultName()

virtual String cv::Algorithm::getDefaultName ( ) const
virtualinherited

Returns the algorithm string identifier.

This string is used as top level xml/yml node tag when the object is saved to a file or string.

Reimplemented in cv::AKAZE, cv::KAZE, cv::SimpleBlobDetector, cv::GFTTDetector, cv::AgastFeatureDetector, cv::FastFeatureDetector, cv::MSER, cv::ORB, cv::BRISK, and cv::Feature2D.

◆ getFLOPS()

virtual int64 cv::dnn::Layer::getFLOPS ( const std::vector< MatShape > &  inputs,
const std::vector< MatShape > &  outputs 
) const
inlinevirtualinherited

◆ getMemoryShapes()

virtual bool cv::dnn::Layer::getMemoryShapes ( const std::vector< MatShape > &  inputs,
const int  requiredOutputs,
std::vector< MatShape > &  outputs,
std::vector< MatShape > &  internals 
) const
virtualinherited

◆ getScaleShift()

virtual void cv::dnn::Layer::getScaleShift ( Mat scale,
Mat shift 
) const
virtualinherited

Returns parameters of layers with channel-wise multiplication and addition.

Parameters
[out]scaleChannel-wise multipliers. Total number of values should be equal to number of channels.
[out]shiftChannel-wise offsets. Total number of values should be equal to number of channels.

Some layers can fuse their transformations with further layers. In example, convolution + batch normalization. This way base layer use weights from layer after it. Fused layer is skipped. By default, scale and shift are empty that means layer has no element-wise multiplications or additions.

◆ initHalide()

virtual Ptr<BackendNode> cv::dnn::Layer::initHalide ( const std::vector< Ptr< BackendWrapper > > &  inputs)
virtualinherited

Returns Halide backend node.

Parameters
[in]inputsInput Halide buffers.
See also
BackendNode, BackendWrapper

Input buffers should be exactly the same that will be used in forward invocations. Despite we can use Halide::ImageParam based on input shape only, it helps prevent some memory management issues (if something wrong, Halide tests will be failed).

◆ initInfEngine()

virtual Ptr<BackendNode> cv::dnn::Layer::initInfEngine ( const std::vector< Ptr< BackendWrapper > > &  inputs)
virtualinherited

◆ initVkCom()

virtual Ptr<BackendNode> cv::dnn::Layer::initVkCom ( const std::vector< Ptr< BackendWrapper > > &  inputs)
virtualinherited

◆ inputNameToIndex()

virtual int cv::dnn::Layer::inputNameToIndex ( String  inputName)
virtualinherited

Returns index of input blob into the input array.

Parameters
inputNamelabel of input blob

Each layer input and output can be labeled to easily identify them using "%<layer_name%>[.output_name]" notation. This method maps label of input blob to its index into input vector.

Reimplemented in cv::dnn::LSTMLayer.

◆ load()

template<typename _Tp >
static Ptr<_Tp> cv::Algorithm::load ( const String filename,
const String objname = String() 
)
inlinestaticinherited

Loads algorithm from the file.

Parameters
filenameName of the file to read.
objnameThe optional name of the node to read (if empty, the first top-level node will be used)

This is static template method of Algorithm. It's usage is following (in the case of SVM):

Ptr<SVM> svm = Algorithm::load<SVM>("my_svm_model.xml");

In order to make this method work, the derived class must overwrite Algorithm::read(const FileNode& fn).

References CV_Assert, cv::FileNode::empty(), cv::FileStorage::getFirstTopLevelNode(), cv::FileStorage::isOpened(), and cv::FileStorage::READ.

Here is the call graph for this function:

◆ loadFromString()

template<typename _Tp >
static Ptr<_Tp> cv::Algorithm::loadFromString ( const String strModel,
const String objname = String() 
)
inlinestaticinherited

Loads algorithm from a String.

Parameters
strModelThe string variable containing the model you want to load.
objnameThe optional name of the node to read (if empty, the first top-level node will be used)

This is static template method of Algorithm. It's usage is following (in the case of SVM):

Ptr<SVM> svm = Algorithm::loadFromString<SVM>(myStringModel);

References CV_WRAP, cv::FileNode::empty(), cv::FileStorage::getFirstTopLevelNode(), cv::FileStorage::MEMORY, and cv::FileStorage::READ.

Here is the call graph for this function:

◆ outputNameToIndex()

virtual int cv::dnn::Layer::outputNameToIndex ( const String outputName)
virtualinherited

Returns index of output blob in output array.

See also
inputNameToIndex()

Reimplemented in cv::dnn::LSTMLayer.

◆ read() [1/2]

virtual void cv::Algorithm::read ( const FileNode fn)
inlinevirtualinherited

Reads algorithm parameters from a file storage.

Reimplemented in cv::FlannBasedMatcher, cv::DescriptorMatcher, and cv::Feature2D.

◆ read() [2/2]

template<typename _Tp >
static Ptr<_Tp> cv::Algorithm::read ( const FileNode fn)
inlinestaticinherited

Reads algorithm from the file node.

This is static template method of Algorithm. It's usage is following (in the case of SVM):

cv::FileStorage fsRead("example.xml", FileStorage::READ);
Ptr<SVM> svm = Algorithm::read<SVM>(fsRead.root());

In order to make this method work, the derived class must overwrite Algorithm::read(const FileNode& fn) and also have static create() method without parameters (or with all the optional parameters)

◆ run()

void cv::dnn::Layer::run ( const std::vector< Mat > &  inputs,
std::vector< Mat > &  outputs,
std::vector< Mat > &  internals 
)
inherited

Allocates layer and computes output.

Deprecated:
This method will be removed in the future release.

◆ save()

virtual void cv::Algorithm::save ( const String filename) const
virtualinherited

Saves the algorithm to a file.

In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).

◆ setActivation()

virtual bool cv::dnn::Layer::setActivation ( const Ptr< ActivationLayer > &  layer)
virtualinherited

Tries to attach to the layer the subsequent activation layer, i.e.

do the layer fusion in a partial case.

Parameters
[in]layerThe subsequent activation layer.

Returns true if the activation layer has been attached successfully.

◆ setParamsFrom()

void cv::dnn::Layer::setParamsFrom ( const LayerParams params)
inherited

Initializes only name, type and blobs fields.

◆ supportBackend()

virtual bool cv::dnn::Layer::supportBackend ( int  backendId)
virtualinherited

Ask layer if it support specific backend for doing computations.

Parameters
[in]backendIdcomputation backend identifier.
See also
Backend

◆ tryAttach()

virtual Ptr<BackendNode> cv::dnn::Layer::tryAttach ( const Ptr< BackendNode > &  node)
virtualinherited

Implement layers fusing.

Parameters
[in]nodeBackend node of bottom layer.
See also
BackendNode

Actual for graph-based backends. If layer attached successfully, returns non-empty cv::Ptr to node of the same backend. Fuse only over the last function.

◆ tryFuse()

virtual bool cv::dnn::Layer::tryFuse ( Ptr< Layer > &  top)
virtualinherited

Try to fuse current layer with a next one.

Parameters
[in]topNext layer to be fused.
Returns
True if fusion was performed.

◆ unsetAttached()

virtual void cv::dnn::Layer::unsetAttached ( )
virtualinherited

"Deattaches" all the layers, attached to particular layer.

◆ write() [1/2]

virtual void cv::Algorithm::write ( FileStorage fs) const
inlinevirtualinherited

Stores algorithm parameters in a file storage.

Reimplemented in cv::FlannBasedMatcher, cv::DescriptorMatcher, and cv::Feature2D.

References CV_WRAP.

Referenced by cv::Feature2D::write(), and cv::DescriptorMatcher::write().

Here is the caller graph for this function:

◆ write() [2/2]

void cv::Algorithm::write ( const Ptr< FileStorage > &  fs,
const String name = String() 
) const
inherited

simplified API for language bindings This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

◆ writeFormat()

void cv::Algorithm::writeFormat ( FileStorage fs) const
protectedinherited

Member Data Documentation

◆ blobs

std::vector<Mat> cv::dnn::Layer::blobs
inherited

List of learned parameters must be stored here to allow read them by using Net::getParam().

◆ name

String cv::dnn::Layer::name
inherited

Name of the layer instance, can be used for logging or other internal purposes.

◆ preferableTarget

int cv::dnn::Layer::preferableTarget
inherited

prefer target for layer forwarding

◆ type

String cv::dnn::Layer::type
inherited

Type name which was used for creating layer by layer factory.


The documentation for this class was generated from the following file: