OpenCV  4.1.1-pre
Open Source Computer Vision
Looking for a C++ dev who knows OpenCV?
I'm looking for work. Hire me!
cv::ml::LogisticRegression Class Referenceabstract

Implements Logistic Regression classifier. More...

#include <opencv2/ml.hpp>

Inheritance diagram for cv::ml::LogisticRegression:
Collaboration diagram for cv::ml::LogisticRegression:

Public Types

enum  Flags {
  UPDATE_MODEL = 1,
  RAW_OUTPUT =1,
  COMPRESSED_INPUT =2,
  PREPROCESSED_INPUT =4
}
 Predict options. More...
 
enum  Methods {
  BATCH = 0,
  MINI_BATCH = 1
}
 Training methods. More...
 
enum  RegKinds {
  REG_DISABLE = -1,
  REG_L1 = 0,
  REG_L2 = 1
}
 Regularization kinds. More...
 

Public Member Functions

virtual float calcError (const Ptr< TrainData > &data, bool test, OutputArray resp) const
 Computes error on the training or test dataset. More...
 
virtual void clear ()
 Clears the algorithm state. More...
 
virtual bool empty () const CV_OVERRIDE
 Returns true if the Algorithm is empty (e.g. More...
 
virtual Mat get_learnt_thetas () const =0
 This function returns the trained parameters arranged across rows. More...
 
virtual String getDefaultName () const
 Returns the algorithm string identifier. More...
 
virtual int getIterations () const =0
 Number of iterations. More...
 
virtual double getLearningRate () const =0
 Learning rate. More...
 
virtual int getMiniBatchSize () const =0
 Specifies the number of training samples taken in each step of Mini-Batch Gradient Descent. More...
 
virtual int getRegularization () const =0
 Kind of regularization to be applied. More...
 
virtual TermCriteria getTermCriteria () const =0
 Termination criteria of the algorithm. More...
 
virtual int getTrainMethod () const =0
 Kind of training method used. More...
 
virtual int getVarCount () const =0
 Returns the number of variables in training samples. More...
 
virtual bool isClassifier () const =0
 Returns true if the model is classifier. More...
 
virtual bool isTrained () const =0
 Returns true if the model is trained. More...
 
virtual float predict (InputArray samples, OutputArray results=noArray(), int flags=0) const CV_OVERRIDE=0
 Predicts responses for input samples and returns a float type. More...
 
virtual void read (const FileNode &fn)
 Reads algorithm parameters from a file storage. More...
 
virtual void save (const String &filename) const
 Saves the algorithm to a file. More...
 
virtual void setIterations (int val)=0
 Number of iterations. More...
 
virtual void setLearningRate (double val)=0
 Learning rate. More...
 
virtual void setMiniBatchSize (int val)=0
 Specifies the number of training samples taken in each step of Mini-Batch Gradient Descent. More...
 
virtual void setRegularization (int val)=0
 Kind of regularization to be applied. More...
 
virtual void setTermCriteria (TermCriteria val)=0
 Termination criteria of the algorithm. More...
 
virtual void setTrainMethod (int val)=0
 Kind of training method used. More...
 
virtual bool train (const Ptr< TrainData > &trainData, int flags=0)
 Trains the statistical model. More...
 
virtual bool train (InputArray samples, int layout, InputArray responses)
 Trains the statistical model. More...
 
virtual void write (FileStorage &fs) const
 Stores algorithm parameters in a file storage. More...
 
void write (const Ptr< FileStorage > &fs, const String &name=String()) const
 simplified API for language bindings This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts. More...
 

Static Public Member Functions

static Ptr< LogisticRegressioncreate ()
 Creates empty model. More...
 
static Ptr< LogisticRegressionload (const String &filepath, const String &nodeName=String())
 Loads and creates a serialized LogisticRegression from a file. More...
 
template<typename _Tp >
static Ptr< _Tp > loadFromString (const String &strModel, const String &objname=String())
 Loads algorithm from a String. More...
 
template<typename _Tp >
static Ptr< _Tp > read (const FileNode &fn)
 Reads algorithm from the file node. More...
 
template<typename _Tp >
static Ptr< _Tp > train (const Ptr< TrainData > &data, int flags=0)
 Create and train model with default parameters. More...
 

Protected Member Functions

void writeFormat (FileStorage &fs) const
 

Detailed Description

Implements Logistic Regression classifier.

See also
Logistic Regression

Member Enumeration Documentation

◆ Flags

enum cv::ml::StatModel::Flags
inherited

Predict options.

Enumerator
UPDATE_MODEL 
RAW_OUTPUT 

makes the method return the raw results (the sum), not the class label

COMPRESSED_INPUT 
PREPROCESSED_INPUT 

◆ Methods

Training methods.

Enumerator
BATCH 
MINI_BATCH 

Set MiniBatchSize to a positive integer when using this method.

◆ RegKinds

Regularization kinds.

Enumerator
REG_DISABLE 

Regularization disabled.

REG_L1 

L1 norm

REG_L2 

L2 norm

Member Function Documentation

◆ calcError()

virtual float cv::ml::StatModel::calcError ( const Ptr< TrainData > &  data,
bool  test,
OutputArray  resp 
) const
virtualinherited

Computes error on the training or test dataset.

Parameters
datathe training data
testif true, the error is computed over the test subset of the data, otherwise it's computed over the training subset of the data. Please note that if you loaded a completely different dataset to evaluate already trained classifier, you will probably want not to set the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so that the error is computed for the whole new set. Yes, this sounds a bit confusing.
respthe optional output responses.

The method uses StatModel::predict to compute the error. For regression models the error is computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%).

◆ clear()

virtual void cv::Algorithm::clear ( )
inlinevirtualinherited

Clears the algorithm state.

Reimplemented in cv::FlannBasedMatcher, and cv::DescriptorMatcher.

◆ create()

static Ptr<LogisticRegression> cv::ml::LogisticRegression::create ( )
static

Creates empty model.

Creates Logistic Regression model with parameters given.

◆ empty()

virtual bool cv::ml::StatModel::empty ( ) const
virtualinherited

Returns true if the Algorithm is empty (e.g.

in the very beginning or after unsuccessful read

Reimplemented from cv::Algorithm.

◆ get_learnt_thetas()

virtual Mat cv::ml::LogisticRegression::get_learnt_thetas ( ) const
pure virtual

This function returns the trained parameters arranged across rows.

For a two class classifcation problem, it returns a row matrix. It returns learnt parameters of the Logistic Regression as a matrix of type CV_32F.

◆ getDefaultName()

virtual String cv::Algorithm::getDefaultName ( ) const
virtualinherited

Returns the algorithm string identifier.

This string is used as top level xml/yml node tag when the object is saved to a file or string.

Reimplemented in cv::AKAZE, cv::KAZE, cv::SimpleBlobDetector, cv::GFTTDetector, cv::AgastFeatureDetector, cv::FastFeatureDetector, cv::MSER, cv::ORB, cv::BRISK, and cv::Feature2D.

◆ getIterations()

virtual int cv::ml::LogisticRegression::getIterations ( ) const
pure virtual

Number of iterations.

See also
setIterations

◆ getLearningRate()

virtual double cv::ml::LogisticRegression::getLearningRate ( ) const
pure virtual

Learning rate.

See also
setLearningRate

◆ getMiniBatchSize()

virtual int cv::ml::LogisticRegression::getMiniBatchSize ( ) const
pure virtual

Specifies the number of training samples taken in each step of Mini-Batch Gradient Descent.

Will only be used if using LogisticRegression::MINI_BATCH training algorithm. It has to take values less than the total number of training samples.

See also
setMiniBatchSize

◆ getRegularization()

virtual int cv::ml::LogisticRegression::getRegularization ( ) const
pure virtual

Kind of regularization to be applied.

See LogisticRegression::RegKinds.

See also
setRegularization

◆ getTermCriteria()

virtual TermCriteria cv::ml::LogisticRegression::getTermCriteria ( ) const
pure virtual

Termination criteria of the algorithm.

See also
setTermCriteria

◆ getTrainMethod()

virtual int cv::ml::LogisticRegression::getTrainMethod ( ) const
pure virtual

Kind of training method used.

See LogisticRegression::Methods.

See also
setTrainMethod

◆ getVarCount()

virtual int cv::ml::StatModel::getVarCount ( ) const
pure virtualinherited

Returns the number of variables in training samples.

◆ isClassifier()

virtual bool cv::ml::StatModel::isClassifier ( ) const
pure virtualinherited

Returns true if the model is classifier.

◆ isTrained()

virtual bool cv::ml::StatModel::isTrained ( ) const
pure virtualinherited

Returns true if the model is trained.

◆ load()

static Ptr<LogisticRegression> cv::ml::LogisticRegression::load ( const String filepath,
const String nodeName = String() 
)
static

Loads and creates a serialized LogisticRegression from a file.

Use LogisticRegression::save to serialize and store an LogisticRegression to disk. Load the LogisticRegression from this file again, by calling this function with the path to the file. Optionally specify the node for the file containing the classifier

Parameters
filepathpath to serialized LogisticRegression
nodeNamename of node containing the classifier

◆ loadFromString()

template<typename _Tp >
static Ptr<_Tp> cv::Algorithm::loadFromString ( const String strModel,
const String objname = String() 
)
inlinestaticinherited

Loads algorithm from a String.

Parameters
strModelThe string variable containing the model you want to load.
objnameThe optional name of the node to read (if empty, the first top-level node will be used)

This is static template method of Algorithm. It's usage is following (in the case of SVM):

Ptr<SVM> svm = Algorithm::loadFromString<SVM>(myStringModel);

References CV_WRAP, cv::FileNode::empty(), cv::FileStorage::getFirstTopLevelNode(), cv::FileStorage::MEMORY, and cv::FileStorage::READ.

Here is the call graph for this function:

◆ predict()

virtual float cv::ml::LogisticRegression::predict ( InputArray  samples,
OutputArray  results = noArray(),
int  flags = 0 
) const
pure virtual

Predicts responses for input samples and returns a float type.

Parameters
samplesThe input data for the prediction algorithm. Matrix [m x n], where each row contains variables (features) of one object being classified. Should have data type CV_32F.
resultsPredicted labels as a column matrix of type CV_32S.
flagsNot used.

Implements cv::ml::StatModel.

◆ read() [1/2]

virtual void cv::Algorithm::read ( const FileNode fn)
inlinevirtualinherited

Reads algorithm parameters from a file storage.

Reimplemented in cv::FlannBasedMatcher, cv::DescriptorMatcher, and cv::Feature2D.

◆ read() [2/2]

template<typename _Tp >
static Ptr<_Tp> cv::Algorithm::read ( const FileNode fn)
inlinestaticinherited

Reads algorithm from the file node.

This is static template method of Algorithm. It's usage is following (in the case of SVM):

cv::FileStorage fsRead("example.xml", FileStorage::READ);
Ptr<SVM> svm = Algorithm::read<SVM>(fsRead.root());

In order to make this method work, the derived class must overwrite Algorithm::read(const FileNode& fn) and also have static create() method without parameters (or with all the optional parameters)

◆ save()

virtual void cv::Algorithm::save ( const String filename) const
virtualinherited

Saves the algorithm to a file.

In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).

◆ setIterations()

virtual void cv::ml::LogisticRegression::setIterations ( int  val)
pure virtual

Number of iterations.

See also
getIterations

◆ setLearningRate()

virtual void cv::ml::LogisticRegression::setLearningRate ( double  val)
pure virtual

Learning rate.

See also
getLearningRate

◆ setMiniBatchSize()

virtual void cv::ml::LogisticRegression::setMiniBatchSize ( int  val)
pure virtual

Specifies the number of training samples taken in each step of Mini-Batch Gradient Descent.

See also
getMiniBatchSize

◆ setRegularization()

virtual void cv::ml::LogisticRegression::setRegularization ( int  val)
pure virtual

Kind of regularization to be applied.

See also
getRegularization

◆ setTermCriteria()

virtual void cv::ml::LogisticRegression::setTermCriteria ( TermCriteria  val)
pure virtual

Termination criteria of the algorithm.

See also
getTermCriteria

◆ setTrainMethod()

virtual void cv::ml::LogisticRegression::setTrainMethod ( int  val)
pure virtual

Kind of training method used.

See also
getTrainMethod

◆ train() [1/3]

virtual bool cv::ml::StatModel::train ( const Ptr< TrainData > &  trainData,
int  flags = 0 
)
virtualinherited

Trains the statistical model.

Parameters
trainDatatraining data that can be loaded from file using TrainData::loadFromCSV or created with TrainData::create.
flagsoptional flags, depending on the model. Some of the models can be updated with the new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).

◆ train() [2/3]

virtual bool cv::ml::StatModel::train ( InputArray  samples,
int  layout,
InputArray  responses 
)
virtualinherited

Trains the statistical model.

Parameters
samplestraining samples
layoutSee ml::SampleTypes.
responsesvector of responses associated with the training samples.

◆ train() [3/3]

template<typename _Tp >
static Ptr<_Tp> cv::ml::StatModel::train ( const Ptr< TrainData > &  data,
int  flags = 0 
)
inlinestaticinherited

Create and train model with default parameters.

The class must implement static create() method with no parameters or with all default parameter values

◆ write() [1/2]

virtual void cv::Algorithm::write ( FileStorage fs) const
inlinevirtualinherited

Stores algorithm parameters in a file storage.

Reimplemented in cv::FlannBasedMatcher, cv::DescriptorMatcher, and cv::Feature2D.

References CV_WRAP.

Referenced by cv::Feature2D::write(), and cv::DescriptorMatcher::write().

Here is the caller graph for this function:

◆ write() [2/2]

void cv::Algorithm::write ( const Ptr< FileStorage > &  fs,
const String name = String() 
) const
inherited

simplified API for language bindings This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

◆ writeFormat()

void cv::Algorithm::writeFormat ( FileStorage fs) const
protectedinherited

The documentation for this class was generated from the following file: